Nothing
# __________________ #< c57f9a818c5fbbd07c256952a1b6699a ># __________________
# Triangle ####
#' @title Create x-coordinates so the points form a triangle
#' @description
#' \Sexpr[results=rd, stage=render]{lifecycle::badge("experimental")}
#'
#' Create the x-coordinates for a \code{vector} of y-coordinates such that
#' they form a triangle.
#'
#' The data points are stochastically distributed based on edge lengths, why it might be preferable to
#' set a random seed.
#'
#' This will likely look most like a triangle when the y-coordinates are somewhat equally distributed,
#' e.g. a uniform distribution.
#'
#' @author Ludvig Renbo Olsen, \email{r-pkgs@@ludvigolsen.dk}
#' @inheritParams hexagonalize
#' @export
#' @return \code{data.frame} (\code{tibble}) with the added x-coordinates and an identifier
#' for the edge the data point is a part of.
#' @family forming functions
#' @examples
#' # Attach packages
#' library(rearrr)
#' library(dplyr)
#' library(purrr)
#' has_ggplot <- require(ggplot2) # Attach if installed
#'
#' # Set seed
#' set.seed(1)
#'
#' # Create a data frame
#' df <- data.frame(
#' "y" = runif(200),
#' "g" = factor(rep(1:5, each = 40))
#' )
#'
#' # Triangularize 'y'
#' df_tri <- triangularize(df, y_col = "y")
#' df_tri
#'
#' # Plot triangle
#' if (has_ggplot){
#' df_tri %>%
#' ggplot(aes(x = .triangle_x, y = y, color = .edge)) +
#' geom_point() +
#' theme_minimal()
#' }
#'
#' #
#' # Grouped squaring
#' #
#'
#' # Triangularize 'y' for each group
#' # First cluster the groups a bit to move the
#' # triangles away from each other
#' df_tri <- df %>%
#' cluster_groups(
#' cols = "y",
#' group_cols = "g",
#' suffix = "",
#' overwrite = TRUE
#' ) %>%
#' dplyr::group_by(g) %>%
#' triangularize(
#' y_col = "y",
#' overwrite = TRUE
#' )
#'
#' # Plot triangles
#' if (has_ggplot){
#' df_tri %>%
#' ggplot(aes(x = .triangle_x, y = y, color = g)) +
#' geom_point() +
#' theme_minimal()
#' }
#'
#' #
#' # Specifying minimum value
#' #
#'
#' # Specify minimum value manually
#' df_tri <- triangularize(df, y_col = "y", .min = -2)
#' df_tri
#'
#' # Plot triangle
#' if (has_ggplot){
#' df_tri %>%
#' ggplot(aes(x = .triangle_x, y = y, color = .edge)) +
#' geom_point() +
#' theme_minimal()
#' }
#'
#' #
#' # Multiple triangles by contraction
#' #
#'
#' \donttest{
#' # Start by squaring 'y'
#' df_tri <- triangularize(df, y_col = "y")
#'
#' # Contract '.triangle_x' and 'y' towards the centroid
#' # To contract with multiple multipliers at once,
#' # we wrap the call in purrr::map_dfr
#' df_expanded <- purrr::map_dfr(
#' .x = 1:10 / 10,
#' .f = function(mult) {
#' expand_distances(
#' data = df_tri,
#' cols = c(".triangle_x", "y"),
#' multiplier = mult,
#' origin_fn = centroid,
#' overwrite = TRUE
#' )
#' }
#' )
#' df_expanded
#'
#' if (has_ggplot){
#' df_expanded %>%
#' ggplot(aes(
#' x = .triangle_x_expanded, y = y_expanded,
#' color = .edge, alpha = .multiplier
#' )) +
#' geom_point() +
#' theme_minimal()
#' }
#' }
triangularize <- function(data,
y_col = NULL,
.min = NULL,
.max = NULL,
offset_x = 0,
keep_original = TRUE,
x_col_name = ".triangle_x",
edge_col_name = ".edge",
overwrite = FALSE) {
# Check arguments ####
assert_collection <- checkmate::makeAssertCollection()
checkmate::assert_string(x_col_name, min.chars = 1, add = assert_collection)
checkmate::assert_string(edge_col_name, null.ok = TRUE, add = assert_collection)
checkmate::assert_number(.min, null.ok = TRUE, add = assert_collection)
checkmate::assert_number(.max, null.ok = TRUE, add = assert_collection)
checkmate::assert_number(offset_x, add = assert_collection)
checkmate::reportAssertions(assert_collection)
check_unique_colnames_(y_col, x_col_name, edge_col_name)
check_overwrite_(data = data,
nm = x_col_name,
overwrite = overwrite)
check_overwrite_(data = data,
nm = edge_col_name,
overwrite = overwrite)
# End of argument checks ####
# Mutate with each multiplier
multi_mutator_(
data = data,
mutate_fn = triangularize_mutator_method_,
check_fn = NULL,
cols = y_col,
suffix = "",
overwrite = overwrite,
force_df = TRUE,
keep_original = keep_original,
.min = .min,
.max = .max,
offset_x = offset_x,
x_col_name = x_col_name,
edge_col_name = edge_col_name
)
}
triangularize_mutator_method_ <- function(data,
grp_id,
cols,
overwrite,
.min,
.max,
offset_x,
x_col_name,
edge_col_name,
suffix = NULL,
...) {
col <- cols
# Create tmp var names
tmp_side_col <- create_tmp_var(data, tmp_var = ".side")
tmp_index_col <- create_tmp_var(data)
# Create temporary index for reordering later
data[[tmp_index_col]] <- seq_len(nrow(data))
# Order by column of interest
data <- data[order(data[[col]]), , drop = FALSE]
# Find minimum value
if (is.null(.min)) {
.min <- min(data[[col]])
}
# Find maximum value
if (is.null(.max)) {
.max <- max(data[[col]])
}
# Set range outliers no NA
data_list <- split_range_outliers_(
data = data,
col = col,
.min = .min,
.max = .max
)
data <- data_list[["data"]]
outliers <- data_list[["outliers"]]
# Properties of triangle
height <- .max - .min
# Pythagoras comes in handy!
side_length <- sqrt(2 * (height / 2)^2)
width <- height
# Dividing into sides (left/right)
# As the two short sides together require more points than the long left-side
# we need to distribute the points depending on the ratio between lengths of left and right
# But, we still want to make sure that it alternates all the time between the two sides
# so we don't get large holes in the lines.
# So we make sure there's at least one of both sides every 3 data points
# and randomly distribute the last (3rd) data point based on the ratio
# Calculate the distribution of the last one-third of sides
n_right <- round((nrow(data) / (2 * side_length + height)) * 2 * side_length)
n_left <- nrow(data) - n_right
excess_right <- n_right - nrow(data) / 3
excess_left <- n_left - nrow(data) / 3
# Divide into sides (left/right)
# We sample based on the side lengths
data[[tmp_side_col]] <-
head(purrr::simplify(purrr::map(
.x = seq_len(ceiling(nrow(data) / 2)),
.f = function(x) {
sample(c(1, 2, sample(
x = c(1, 2),
size = 1,
prob = c(excess_left, excess_right)
)), replace = FALSE)
}
)), nrow(data))
# Section cutoffs
midline <- (.max - (height / 2))
# Get data points per section (top, bottom)
top <-
data[data[[col]] >= midline, ,
drop = FALSE
]
bottom <-
data[data[[col]] < midline, ,
drop = FALSE
]
## Create x-coordinate
# Top section
top[[x_col_name]] <-
min_max_scale(
top[[col]],
new_min = width / 2,
new_max = 0,
old_min = midline,
old_max = .max
)
# Bottom section
bottom[[x_col_name]] <-
min_max_scale(
bottom[[col]],
new_min = 0,
new_max = width / 2,
old_min = .min,
old_max = midline
)
outliers <- add_na_column_(data = outliers, col = x_col_name, overwrite = overwrite)
# Edge numbers
if (!is.null(edge_col_name)){
top[[edge_col_name]] <- ifelse(top[[tmp_side_col]] == 1, 3, 1)
bottom[[edge_col_name]] <- ifelse(bottom[[tmp_side_col]] == 1, 3, 2)
outliers <- add_na_column_(data = outliers, col = edge_col_name, overwrite = overwrite)
}
# Combine datasets
new_data <- dplyr::bind_rows(
top, bottom, outliers
)
# Push to sides
new_data[[x_col_name]] <- ifelse(new_data[[tmp_side_col]] == 1,
0,
new_data[[x_col_name]]
)
# Clean up
new_data <- new_data[order(new_data[[tmp_index_col]]), , drop = FALSE]
new_data[[tmp_index_col]] <- NULL
new_data[[tmp_side_col]] <- NULL
if (!is.null(edge_col_name)){
new_data[[edge_col_name]] <- factor(new_data[[edge_col_name]])
}
# Offset x
new_data[[x_col_name]] <- new_data[[x_col_name]] + offset_x
new_data
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.