Nothing
library(rearrr)
context("distance()")
test_that("distance()", {
# Set seed
xpectr::set_test_seed(42)
df <- data.frame(
"x" = runif(20),
"y" = runif(20),
"z" = runif(20),
"g" = rep(1:4, each = 5),
stringsAsFactors = FALSE
)
# Generate expectations for 'distance'
# Tip: comment out the gxs_function() call
# so it is easy to regenerate the tests
xpectr::set_test_seed(42)
# xpectr::gxs_function(
# fn = distance,
# args_values = list(
# "data" = list(df, c(1, 2, 3, 4, 5, 6), matrix(1:10, nrow = 5, ncol = 2), NA),
# "cols" = list(c("x", "y", "z"), c("x", "y"), "x", 1, NA),
# "origin" = list(NULL, c(0.5, 0.5, 0.5), 0, NA),
# "origin_fn" = list(centroid, most_centered, median, 1, NA),
# "distance_col_name" = list(".distance", ".dist"),
# "origin_col_name" = list(".origin")
# ),
# extra_combinations = list(
# list("data" = c(1, 2, 3, 4, 5, 6), "cols" = NULL),
# list("data" = dplyr::group_by(df, g)),
# list("origin" = c(0.5, 0.5, 0.5), "origin_fn" = NULL),
# list("origin" = 0, "origin_fn" = NULL)
# ),
# indentation = 2,
# copy_env = FALSE
# )
## Testing 'distance' ####
## Initially generated by xpectr
# Testing different combinations of argument values
# Testing distance(data = df, cols = c("x", "y", "z"),...
xpectr::set_test_seed(42)
# Assigning output
output_19148 <- distance(data = df, cols = c("x", "y", "z"), origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin")
# Testing class
expect_equal(
class(output_19148),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_19148[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_19148[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_19148[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_19148[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_19148[[".distance"]],
c(0.4766, 0.54551, 0.72643, 0.62249, 0.49563, 0.4406, 0.41748, 0.59623,
0.45879, 0.29744, 0.30324, 0.32308, 0.39102, 0.45444, 0.76268,
0.47443, 0.68441, 0.70994, 0.45469, 0.07088),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_19148),
c("x", "y", "z", "g", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_19148),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_19148),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_19148),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_19148)),
character(0),
fixed = TRUE)
# Testing distance(data = c(1, 2, 3, 4, 5, 6), cols = ...
# Changed from baseline: data = c(1, 2, 3, 4, ...
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_19370 <- xpectr::capture_side_effects(distance(data = c(1, 2, 3, 4, 5, 6), cols = c("x", "y", "z"), origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_19370[['error']]),
xpectr::strip("1 assertions failed:\n * when 'data' is not a data.frame, 'col(s)' must be 'NULL'."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_19370[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = matrix(1:10, nrow = 5, ncol ...
# Changed from baseline: data = matrix(1:10, n...
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_12861 <- xpectr::capture_side_effects(distance(data = matrix(1:10, nrow = 5, ncol = 2), cols = c("x", "y", "z"), origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_12861[['error']]),
xpectr::strip("Assertion failed. One of the following must apply:\n * checkmate::check_data_frame(data): Must be of type 'data.frame', not 'matrix'\n * checkmate::check_vector(data): Must be of type 'vector', not 'matrix'\n * checkmate::check_factor(data): Must be of type 'factor', not 'matrix'"),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_12861[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = dplyr::group_by(df, g), cols...
# Changed from baseline: data = dplyr::group_b...
xpectr::set_test_seed(42)
# Assigning output
output_18304 <- distance(data = dplyr::group_by(df, g), cols = c("x", "y", "z"), origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin")
# Testing class
expect_equal(
class(output_18304),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_18304[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_18304[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_18304[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_18304[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_18304[[".distance"]],
c(0.35713, 0.52022, 0.70957, 0.62934, 0.53613, 0.17947, 0.30348,
0.53477, 0.2552, 0.33112, 0.24294, 0.32612, 0.39388, 0.5342,
0.6317, 0.53248, 0.65541, 0.65736, 0.46869, 0.11915),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_18304),
c("x", "y", "z", "g", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_18304),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_18304),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_18304),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_18304)),
character(0),
fixed = TRUE)
# Testing distance(data = NA, cols = c("x", "y", "z"),...
# Changed from baseline: data = NA
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_16417 <- xpectr::capture_side_effects(distance(data = NA, cols = c("x", "y", "z"), origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_16417[['error']]),
xpectr::strip(ifelse(
is_checkmate_v2_1(),
"Assertion failed. One of the following must apply:\n * checkmate::check_data_frame(data): Must be of type 'data.frame', not 'logical'\n * checkmate::check_vector(data): Contains missing values (element 1)\n * checkmate::check_factor(data): Must be of type 'factor', not 'logical'",
"Assertion failed. One of the following must apply:\n * checkmate::check_data_frame(data): Must be of type 'data.frame', not 'logical'\n * checkmate::check_vector(data): Contains missing values (element 1)\n * checkmate::check_factor(data): Contains missing values (element 1)"
)),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_16417[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = NULL, cols = c("x", "y", "z"...
# Changed from baseline: data = NULL
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_15190 <- xpectr::capture_side_effects(distance(data = NULL, cols = c("x", "y", "z"), origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_15190[['error']]),
xpectr::strip("Assertion failed. One of the following must apply:\n * checkmate::check_data_frame(data): Must be of type 'data.frame', not 'NULL'\n * checkmate::check_vector(data): Must be of type 'vector', not 'NULL'\n * checkmate::check_factor(data): Must be of type 'factor', not 'NULL'"),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_15190[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = c(1, 2, 3, 4, 5, 6), cols = ...
# Changed from baseline: data, cols
xpectr::set_test_seed(42)
# Assigning output
output_17365 <- distance(data = c(1, 2, 3, 4, 5, 6), cols = NULL, origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin")
# Testing class
expect_equal(
class(output_17365),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_17365[["Value"]],
c(1, 2, 3, 4, 5, 6),
tolerance = 1e-4)
expect_equal(
output_17365[[".distance"]],
c(2.5, 1.5, 0.5, 0.5, 1.5, 2.5),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_17365),
c("Value", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_17365),
c("numeric", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_17365),
c("double", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_17365),
c(6L, 3L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_17365)),
character(0),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y"), orig...
# Changed from baseline: cols = c("x", "y")
xpectr::set_test_seed(42)
# Assigning output
output_11346 <- distance(data = df, cols = c("x", "y"), origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin")
# Testing class
expect_equal(
class(output_11346),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_11346[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_11346[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_11346[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_11346[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_11346[[".distance"]],
c(0.45209, 0.53723, 0.53355, 0.43719, 0.48571, 0.108, 0.21587, 0.58607,
0.12807, 0.28399, 0.23054, 0.26579, 0.36809, 0.37664, 0.5832,
0.42118, 0.66847, 0.61239, 0.36635, 0.06905),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_11346),
c("x", "y", "z", "g", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_11346),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_11346),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_11346),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_11346)),
character(0),
fixed = TRUE)
# Testing distance(data = df, cols = "x", origin = NUL...
# Changed from baseline: cols = "x"
xpectr::set_test_seed(42)
# Assigning output
output_16569 <- distance(data = df, cols = "x", origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin")
# Testing class
expect_equal(
class(output_16569),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_16569[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_16569[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_16569[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_16569[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_16569[[".distance"]],
c(0.30166, 0.32393, 0.32701, 0.2173, 0.0286, 0.09405, 0.12344, 0.47848,
0.04385, 0.09192, 0.1554, 0.10597, 0.32153, 0.35772, 0.15085,
0.32687, 0.36508, 0.49566, 0.13815, 0.05281),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_16569),
c("x", "y", "z", "g", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_16569),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_16569),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_16569),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_16569)),
character(0),
fixed = TRUE)
# Testing distance(data = df, cols = 1, origin = NULL,...
# Changed from baseline: cols = 1
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_17050 <- xpectr::capture_side_effects(distance(data = df, cols = 1, origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_17050[['error']]),
xpectr::strip("1 assertions failed:\n * Variable 'cols': Must be of type 'character', not 'double'."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_17050[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = df, cols = NA, origin = NULL...
# Changed from baseline: cols = NA
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_14577 <- xpectr::capture_side_effects(distance(data = df, cols = NA, origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_14577[['error']]),
xpectr::strip("Assertion on 'specified column names (NA, \".distance\", \".origin\")' failed: Contains missing values (element 1)."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_14577[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = df, cols = NULL, origin = NU...
# Changed from baseline: cols = NULL
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_17191 <- xpectr::capture_side_effects(distance(data = df, cols = NULL, origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_17191[['error']]),
xpectr::strip("When 'data' is a data.frame, 'cols' must be specified."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_17191[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin = NA
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_19346 <- xpectr::capture_side_effects(distance(data = df, cols = c("x", "y", "z"), origin = NA, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_19346[['error']]),
xpectr::strip("1 assertions failed:\n * Variable 'origin': Contains missing values (element 1)."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_19346[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin = c(0.5, 0.5, ...
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_12554 <- xpectr::capture_side_effects(distance(data = df, cols = c("x", "y", "z"), origin = c(0.5, 0.5, 0.5), origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_12554[['warnings']]),
xpectr::strip(character(0)),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_12554[['messages']]),
xpectr::strip("When 'origin_fn' is specified, 'origin' is ignored.\n"),
fixed = TRUE)
# Assigning output
output_12554 <- xpectr::suppress_mw(distance(data = df, cols = c("x", "y", "z"), origin = c(0.5, 0.5, 0.5), origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"))
# Testing class
expect_equal(
class(output_12554),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_12554[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_12554[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_12554[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_12554[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_12554[[".distance"]],
c(0.4766, 0.54551, 0.72643, 0.62249, 0.49563, 0.4406, 0.41748, 0.59623,
0.45879, 0.29744, 0.30324, 0.32308, 0.39102, 0.45444, 0.76268,
0.47443, 0.68441, 0.70994, 0.45469, 0.07088),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_12554),
c("x", "y", "z", "g", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_12554),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_12554),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_12554),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_12554)),
character(0),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin = 0
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_14622 <- xpectr::capture_side_effects(distance(data = df, cols = c("x", "y", "z"), origin = 0, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_14622[['warnings']]),
xpectr::strip(character(0)),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_14622[['messages']]),
xpectr::strip("When 'origin_fn' is specified, 'origin' is ignored.\n"),
fixed = TRUE)
# Assigning output
output_14622 <- xpectr::suppress_mw(distance(data = df, cols = c("x", "y", "z"), origin = 0, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = ".origin"))
# Testing class
expect_equal(
class(output_14622),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_14622[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_14622[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_14622[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_14622[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_14622[[".distance"]],
c(0.4766, 0.54551, 0.72643, 0.62249, 0.49563, 0.4406, 0.41748, 0.59623,
0.45879, 0.29744, 0.30324, 0.32308, 0.39102, 0.45444, 0.76268,
0.47443, 0.68441, 0.70994, 0.45469, 0.07088),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_14622),
c("x", "y", "z", "g", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_14622),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_14622),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_14622),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_14622)),
character(0),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin, origin_fn
xpectr::set_test_seed(42)
# Assigning output
output_19400 <- distance(data = df, cols = c("x", "y", "z"), origin = c(0.5, 0.5, 0.5), origin_fn = NULL, distance_col_name = ".distance", origin_col_name = ".origin")
# Testing class
expect_equal(
class(output_19400),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_19400[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_19400[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_19400[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_19400[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_19400[[".distance"]],
c(0.59145, 0.57069, 0.7062, 0.73003, 0.44622, 0.4582, 0.46731, 0.56364,
0.49927, 0.41118, 0.29323, 0.41018, 0.46018, 0.41851, 0.67828,
0.60526, 0.70912, 0.58296, 0.47226, 0.12784),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_19400),
c("x", "y", "z", "g", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_19400),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_19400),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_19400),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_19400)),
character(0),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin, origin_fn
xpectr::set_test_seed(42)
# Assigning output
output_19782 <- distance(data = df, cols = c("x", "y", "z"), origin = 0, origin_fn = NULL, distance_col_name = ".distance", origin_col_name = ".origin")
# Testing class
expect_equal(
class(output_19782),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_19782[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_19782[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_19782[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_19782[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_19782[[".distance"]],
c(1.34097, 1.04271, 1.03014, 1.59173, 0.77784, 1.2045, 1.21776,
1.11717, 1.25467, 1.25657, 0.92992, 1.13805, 1.08767, 1.07259,
0.46395, 1.46221, 1.18983, 0.2937, 1.05627, 0.97615),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_19782),
c("x", "y", "z", "g", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_19782),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_19782),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_19782),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_19782)),
character(0),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin_fn = most_cent...
xpectr::set_test_seed(42)
# Assigning output
output_11174 <- distance(data = df, cols = c("x", "y", "z"), origin = NULL, origin_fn = most_centered, distance_col_name = ".distance", origin_col_name = ".origin")
# Testing class
expect_equal(
class(output_11174),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_11174[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_11174[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_11174[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_11174[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_11174[[".distance"]],
c(0.4788, 0.60985, 0.66701, 0.62921, 0.54191, 0.45565, 0.46856,
0.53233, 0.49492, 0.28658, 0.24313, 0.30501, 0.45122, 0.41401,
0.77791, 0.49799, 0.75267, 0.69078, 0.39797, 0),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_11174),
c("x", "y", "z", "g", ".origin", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_11174),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_11174),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_11174),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_11174)),
character(0),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin_fn = median
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_14749 <- xpectr::capture_side_effects(distance(data = df, cols = c("x", "y", "z"), origin = NULL, origin_fn = median, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_match(
xpectr::strip(side_effects_14749[['error']]),
xpectr::strip("output of 'origin_fn' must have same length as 'cols' (3) but had length 1."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_14749[['error_class']]),
xpectr::strip(c(purrr_error, "error", "condition")),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin_fn = 1
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_15603 <- xpectr::capture_side_effects(distance(data = df, cols = c("x", "y", "z"), origin = NULL, origin_fn = 1, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_15603[['error']]),
xpectr::strip("1 assertions failed:\n * Variable 'origin_fn': Must be a function (or 'NULL'), not 'double'."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_15603[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin_fn = NA
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_19040 <- xpectr::capture_side_effects(distance(data = df, cols = c("x", "y", "z"), origin = NULL, origin_fn = NA, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_19040[['error']]),
xpectr::strip("1 assertions failed:\n * Variable 'origin_fn': Must be a function (or 'NULL'), not 'logical'."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_19040[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin_fn = NULL
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_11387 <- xpectr::capture_side_effects(distance(data = df, cols = c("x", "y", "z"), origin = NULL, origin_fn = NULL, distance_col_name = ".distance", origin_col_name = ".origin"), reset_seed = TRUE)
expect_match(
xpectr::strip(side_effects_11387[['error']]),
xpectr::strip("1 assertions failed:\n * At least one of {'origin', 'origin_fn'} must be specified (not 'NULL')."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_11387[['error_class']]),
xpectr::strip(c(purrr_error, "error", "condition")),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: distance_col_name = "...
xpectr::set_test_seed(42)
# Assigning output
output_19888 <- distance(data = df, cols = c("x", "y", "z"), origin = NULL, origin_fn = centroid, distance_col_name = ".dist", origin_col_name = ".origin")
# Testing class
expect_equal(
class(output_19888),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_19888[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_19888[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_19888[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_19888[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_19888[[".dist"]],
c(0.4766, 0.54551, 0.72643, 0.62249, 0.49563, 0.4406, 0.41748, 0.59623,
0.45879, 0.29744, 0.30324, 0.32308, 0.39102, 0.45444, 0.76268,
0.47443, 0.68441, 0.70994, 0.45469, 0.07088),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_19888),
c("x", "y", "z", "g", ".origin", ".dist"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_19888),
c("numeric", "numeric", "numeric", "integer", "list", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_19888),
c("double", "double", "double", "integer", "list", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_19888),
c(20L, 6L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_19888)),
character(0),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: distance_col_name = NULL
xpectr::set_test_seed(42)
# Testing side effects
# Assigning side effects
side_effects_19466 <- xpectr::capture_side_effects(distance(data = df, cols = c("x", "y", "z"), origin = NULL, origin_fn = centroid, distance_col_name = NULL, origin_col_name = ".origin"), reset_seed = TRUE)
expect_equal(
xpectr::strip(side_effects_19466[['error']]),
xpectr::strip("1 assertions failed:\n * Variable 'distance_col_name': Must be of type 'string', not 'NULL'."),
fixed = TRUE)
expect_equal(
xpectr::strip(side_effects_19466[['error_class']]),
xpectr::strip(c("simpleError", "error", "condition")),
fixed = TRUE)
# Testing distance(data = df, cols = c("x", "y", "z"),...
# Changed from baseline: origin_col_name = NULL
xpectr::set_test_seed(42)
# Assigning output
output_10824 <- distance(data = df, cols = c("x", "y", "z"), origin = NULL, origin_fn = centroid, distance_col_name = ".distance", origin_col_name = NULL)
# Testing class
expect_equal(
class(output_10824),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
output_10824[["x"]],
c(0.91481, 0.93708, 0.28614, 0.83045, 0.64175, 0.5191, 0.73659,
0.13467, 0.65699, 0.70506, 0.45774, 0.71911, 0.93467, 0.25543,
0.46229, 0.94001, 0.97823, 0.11749, 0.475, 0.56033),
tolerance = 1e-4)
expect_equal(
output_10824[["y"]],
c(0.90403, 0.13871, 0.98889, 0.94667, 0.08244, 0.51421, 0.3902,
0.90574, 0.44697, 0.836, 0.7376, 0.81106, 0.38811, 0.68517,
0.00395, 0.83292, 0.00733, 0.20766, 0.9066, 0.61178),
tolerance = 1e-4)
expect_equal(
output_10824[["z"]],
c(0.37956, 0.43577, 0.03743, 0.97354, 0.43175, 0.95758, 0.88775,
0.63998, 0.97097, 0.61884, 0.33343, 0.34675, 0.39849, 0.78469,
0.03894, 0.7488, 0.67728, 0.17126, 0.26109, 0.51441),
tolerance = 1e-4)
expect_equal(
output_10824[["g"]],
c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
tolerance = 1e-4)
expect_equal(
output_10824[[".distance"]],
c(0.4766, 0.54551, 0.72643, 0.62249, 0.49563, 0.4406, 0.41748, 0.59623,
0.45879, 0.29744, 0.30324, 0.32308, 0.39102, 0.45444, 0.76268,
0.47443, 0.68441, 0.70994, 0.45469, 0.07088),
tolerance = 1e-4)
# Testing column names
expect_equal(
names(output_10824),
c("x", "y", "z", "g", ".distance"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(output_10824),
c("numeric", "numeric", "numeric", "integer", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(output_10824),
c("double", "double", "double", "integer", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(output_10824),
c(20L, 5L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(output_10824)),
character(0),
fixed = TRUE)
## Finished testing 'distance' ####
#
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.