pfmix-methods | R Documentation |
Returns the data frame containing observations \bm{x}_{1}, \ldots, \bm{x}_{n}
and
predictive marginal distribution functions F(\bm{x} | c, \bm{w}, \bm{\Theta})
. Vectors \bm{x}
are subvectors of
\bm{y} = (y_{1}, \ldots, y_{d})^{\top}
. If \bm{x} = \bm{y}
the method returns the data frame containing observations \bm{y}_{1}, \ldots, \bm{y}_{n}
and
the corresponding predictive mixture distribution function F(\bm{y} | c, \bm{w}, \bm{\Theta})
.
## S4 method for signature 'REBMIX'
pfmix(x = NULL, Dataset = data.frame(), pos = 1,
variables = expression(1:d), lower.tail = TRUE, log.p = FALSE, ...)
## ... and for other signatures
x |
see Methods section below. |
Dataset |
a data frame containing observations |
pos |
a desired row number in |
variables |
a vector containing indices of variables in subvectors |
lower.tail |
logical. If |
log.p |
logical. if |
... |
currently not used. |
signature(x = "REBMIX")
an object of class REBMIX
.
signature(x = "REBMVNORM")
an object of class REBMVNORM
.
Marko Nagode
M. Nagode and M. Fajdiga. The rebmix algorithm for the univariate finite mixture estimation.
Communications in Statistics - Theory and Methods, 40(5):876-892, 2011a. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/03610920903480890")}.
M. Nagode and M. Fajdiga. The rebmix algorithm for the multivariate finite mixture estimation.
Communications in Statistics - Theory and Methods, 40(11):2022-2034, 2011b. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/03610921003725788")}.
M. Nagode. Finite mixture modeling via REBMIX.
Journal of Algorithms and Optimization, 3(2):14-28, 2015. https://repozitorij.uni-lj.si/Dokument.php?id=127674&lang=eng.
# Generate simulated dataset.
n <- c(15, 15)
Theta <- new("RNGMIX.Theta", c = 2, pdf = rep("normal", 3))
a.theta1(Theta, 1) <- c(10, 20, 30)
a.theta1(Theta, 2) <- c(3, 4, 5)
a.theta2(Theta, 1) <- c(3, 2, 1)
a.theta2(Theta, 2) <- c(15, 10, 5)
simulated <- RNGMIX(Dataset.name = paste("simulated_", 1:4, sep = ""),
rseed = -1,
n = n,
Theta = a.Theta(Theta))
# Number of classes or nearest neighbours to be processed.
K <- c(as.integer(1 + log2(sum(n))), # Minimum v follows Sturges rule.
as.integer(10 * log10(sum(n)))) # Maximum v follows log10 rule.
# Estimate number of components, component weights and component parameters.
simulatedest <- REBMIX(Dataset = a.Dataset(simulated),
Preprocessing = "h",
cmax = 4,
Criterion = "BIC",
pdf = c("n", "n", "n"))
# Preprocess simulated dataset.
Dataset <- data.frame(c(25, 5, -20), NA, c(31, 20, 20))
f <- pfmix(simulatedest, Dataset = Dataset, pos = 3, variables = c(1, 3))
f
# Plot finite mixture.
opar <- plot(simulatedest, pos = 3, nrow = 3, ncol = 1,
what = "pdf", contour.drawlabels = TRUE, contour.labcex = 0.6)
par(usr = opar[[2]]$usr, mfg = c(2, 1))
points(x = f[, 1], y = f[, 2])
text(x = f[, 1], y = f[, 2], labels = format(f[, 3], digits = 3), cex = 0.8, pos = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.