Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
dpi = 60,
collapse = TRUE,
comment = "#>",
fig.align = "center",
fig.width = 4,
strip.white = TRUE
)
## ----echo=F-------------------------------------------------------------------
library(recolorize)
current_par <- graphics::par(no.readonly = TRUE)
## ----fig.width = 5, fig.height=4----------------------------------------------
library(recolorize)
img <- system.file("extdata/ephippigera.png", package = "recolorize")
rc <- recolorize2(img, plotting = FALSE)
layout(matrix(1:2, nrow = 1))
par(mar = c(0, 0, 2, 1))
# calculates the distance matrix and plots the results
dist_original <- imDist(readImage(img),
recoloredImage(rc),
color_space = "sRGB",
main = "Unscaled distances")
# more plotting options - setting the range is important for comparing
# across images (max is sqrt(3) in sRGB space, ~120 in Lab)
imHeatmap(dist_original, range = c(0, sqrt(3)),
main = "Scaled distances")
## ----fig.width = 4, fig.height=3----------------------------------------------
hist(dist_original, main = "sRGB distances", xlab = "Distance")
## ----fig.width = 5, fig.height=4.5--------------------------------------------
img <- system.file("extdata/corbetti.png", package = "recolorize")
rc <- recolorize2(img, cutoff = 45, plotting = FALSE)
layout(matrix(1:10, nrow = 2, byrow = TRUE))
par(mar = c(0, 0, 2, 0))
# 'overlay' is not always the clearest option, but it is usually the prettiest:
layers <- splitByColor(rc, plot_method = "overlay")
# layers is a list of matrices, which we can just plot:
for (i in 1:length(layers)) {
plotImageArray(layers[[i]], main = i)
}
## ----eval=FALSE---------------------------------------------------------------
# # export color map
# recolorize_to_png(rc, filename = "corbetti_recolored.png")
#
# # export individual layers from splitByColor
# for (i in 1:length(layers)) {
# png::writePNG(layers[[i]],
# target = paste0("layer_", i, ".png"))
# }
## ----eval=F-------------------------------------------------------------------
# # convert to a classify object
# as_classify <- classify_recolorize(rc, imgname = "corbetti")
# adj_analysis <- pavo::adjacent(as_classify, xscale = 10)
#
# # run adjacent directly using human perceptual color distances (i.e. no spectral data - proceed with caution)
# adj_human <- recolorize_adjacency(rc)
## ----echo=F-------------------------------------------------------------------
graphics::par(current_par)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.