Nothing
## ----global_options, echo=FALSE, eval=TRUE------------------------------------------------------------------------------------------------------------------------------------------------------------
knitr::opts_chunk$set(fig.width=7, fig.height=5, fig.align='center', echo=TRUE, eval=TRUE, warning=FALSE, message=FALSE)
# increasing the width of the stdout-stream
options(width=200)
## ----load_testcase4, echo=TRUE------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# load refineR package and load data
library(refineR)
head(testcase4)
## ----load_mydata, echo=TRUE---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# open help of read.csv function to get familiar with its parameters
#?read.csv
# set the file path and parameters according to your input file and import dataset
#mydata <- read.csv(file = "file path to mydata.csv", header = TRUE, sep = ",", dec = ".")
#head(mydata)
# extract the column containing the numeric test results
#mydata2 <- mydata[, "column with test results"]
# example how to run refineR estimation
#fit <- findRI(Data = mydata2)
## ----run_refineR_default, echo=TRUE-------------------------------------------------------------------------------------------------------------------------------------------------------------------
# run refineR estimation and print resulting RWDRI object
fit <- findRI(Data = testcase4)
print(fit)
## ----getRI_default, echo=TRUE-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# compute reference intervals using the estimated model parameters
getRI(fit)
## ----plot_default, echo=TRUE--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# plot the estimated model
plot(fit)
## ----run_refineR_bootstrap, echo=TRUE-----------------------------------------------------------------------------------------------------------------------------------------------------------------
# run refineR estimation with 20 bootstrap iterations
fit.bs <- findRI(Data = testcase4, NBootstrap = 20)
print(fit.bs)
## ----run_refineR_modBoxCox, echo=TRUE-----------------------------------------------------------------------------------------------------------------------------------------------------------------
# run refineR estimation with alternative model (two-parameter (modified) Box-Cox transformation)
fit.mbc <- findRI(Data = testcase4, model = "modBoxCox")
print(fit.mbc)
## ----print_refineR_param, echo=TRUE-------------------------------------------------------------------------------------------------------------------------------------------------------------------
# compute 2.5%, 50% (median), 97.5% percentiles for the estimated model
getRI(fit, RIperc = c(0.025, 0.5, 0.975))
# print 2.5%, 50% (median), 97.5% percentiles and estimated model parameters
print(fit, RIperc = c(0.025, 0.5, 0.975))
## ----print_refineR_param_bs, echo=TRUE----------------------------------------------------------------------------------------------------------------------------------------------------------------
# compute percentiles for estimated model with bootstrapping using the median as point estimate
getRI(fit.bs, RIperc = c(0.025, 0.975), pointEst = "medianBS")
# print percentiles for estimated model with bootstrapping using the median as point estimate and estimated model parameters
print(fit.bs, RIperc = c(0.025, 0.975), pointEst = "medianBS")
## ----plot_param, echo=TRUE----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# plot estimated model with bootstrapping with adjusted function arguments
plot(fit.bs, RIperc = c(0.025, 0.5, 0.975), pointEst = "medianBS", xlim = c(0, 100), xlab = "Concentration [U/L]",
title = "Testcase 4")
## ----plot_showPathol, echo=TRUE-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
# plot estimated model with bootstrapping showing the difference between raw input data and estimated model
# (i.e. 'pathological distribution'), wihtout showing the estimated reference limits
plot(fit.bs, showPathol = TRUE, showValue = FALSE, pointEst = "medianBS",
title = "Testcase 4 with pathological distribution")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.