Nothing
###############################################
#------------------- tests -------------------#
###############################################
test_that("the result has the correct class", {
# load the dataset
data(rock)
set.seed(9)
out <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
out.frm <- rfCDF(formula = perm ~ ., data = rock)
# Default method
expect_s3_class(out, "rfdata")
# Class formula method
expect_s3_class(out.frm, "rfdata")
})
###############################################
###############################################
###############################################
test_that("the number of idclean plus idnoise equals the number of dataset samples", {
# load the dataset
data(rock)
set.seed(9)
out <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
out.frm <- rfCDF(formula = perm ~ ., data = rock)
# Default method
expect_true(length(out$idclean) + length(out$idnoise) == nrow(rock))
# Class formula method
expect_true(length(out.frm$idclean) + length(out.frm$idnoise) == nrow(rock))
})
###############################################
###############################################
###############################################
test_that("the idclean and idnoise are equal to dataset rownames", {
# load the dataset
data(rock)
set.seed(9)
out <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
out.frm <- rfCDF(formula = perm ~ ., data = rock)
# Default method
expect_true(any(sort(c(out$idclean,out$idnoise)) == as.integer(rownames(rock))))
# Class formula method
expect_true(any(sort(c(out.frm$idclean,out.frm$idnoise)) == as.integer(rownames(rock))))
})
###############################################
###############################################
###############################################
test_that("the original dataset can be correctly reconstructed from the rfdata object", {
# load the dataset
data(rock)
set.seed(9)
out <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
out.frm <- rfCDF(formula = perm ~ ., data = rock)
# Default method
dataClean <- cbind(out$xclean, out$yclean)
dataNoisy <- cbind(out$xnoise, out$ynoise)
colnames(dataClean) = colnames(dataNoisy) = colnames(rock)
processData <- rbind(dataClean, dataNoisy)
processData <- processData[order(as.numeric(row.names(processData))), ]
expect_equal(processData, rock)
# Class formula method
dataClean.frm <- cbind(out.frm$xclean, out.frm$yclean)
dataNoisy.frm <- cbind(out.frm$xnoise, out.frm$ynoise)
colnames(dataClean.frm) = colnames(dataNoisy.frm) = colnames(rock)
processData.frm <- rbind(dataClean.frm, dataNoisy.frm)
processData.frm <- processData.frm[order(as.numeric(row.names(processData.frm))), ]
expect_equal(processData.frm, rock)
})
###############################################
###############################################
###############################################
test_that("y is a double vector", {
# load the dataset
data(rock)
set.seed(9)
out <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
out.frm <- rfCDF(formula = perm ~ ., data = rock)
# Default method
dataClean <- cbind(out$xclean, out$yclean)
expect_true(is.numeric(dataClean[,ncol(dataClean)]))
# Class formula method
dataClean.frm <- cbind(out.frm$xclean, out.frm$yclean)
expect_true(is.numeric(dataClean.frm[,ncol(dataClean.frm)]))
})
###############################################
###############################################
###############################################
test_that("the result has the correct sum.rfdata", {
# load the dataset
data(rock)
set.seed(9)
out <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
out.frm <- rfCDF(formula = perm ~ ., data = rock)
# Default method
sm <- summary(out, showid = TRUE)
expect_s3_class(sm, "sum.rfdata")
# Class formula method
sm.frm <- summary(out.frm, showid = TRUE)
expect_s3_class(sm.frm, "sum.rfdata")
})
###############################################
###############################################
###############################################
test_that("the result shown the print of summary", {
# load the dataset
data(rock)
set.seed(9)
out <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
out.frm <- rfCDF(formula = perm ~ ., data = rock)
# Default method
sm <- summary(out, showid = TRUE)
expect_output(print(sm))
# Class formula method
sm.frm <- summary(out.frm, showid = TRUE)
expect_output(print(sm.frm))
})
###############################################
###############################################
###############################################
test_that("the result shown the print of summary", {
# load the dataset
data(rock)
set.seed(9)
out <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
out.frm <- rfCDF(formula = perm ~ ., data = rock)
# Default method
expect_output(print(out))
# Class formula method
expect_output(print(out.frm))
})
###############################################
###############################################
###############################################
test_that("Invalid subsets value", {
data(rock)
set.seed(9)
# Default method
expect_error(rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)], subsets=0))
# Class formula method
expect_error(rfCDF(formula = perm ~ ., data = rock, subsets=0))
})
###############################################
###############################################
###############################################
test_that("Invalid prob value", {
# load the dataset
data(rock)
set.seed(9)
# Default method
expect_error(rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)], prob=2))
# Class formula method
expect_error(rfCDF(formula = perm ~ ., data = rock, prob=2))
})
###############################################
###############################################
###############################################
test_that("Invalid VCdim value", {
# load the dataset
data(rock)
set.seed(9)
# Default method
expect_error(rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)], VCdim=0))
# Class formula method
expect_error(rfCDF(formula = perm ~ ., data = rock, VCdim=0))
})
###############################################
###############################################
###############################################
test_that('plot function',{
# load the dataset
data(rock)
set.seed(9)
out <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
bar_plots <- plot(x = out, var = c(1:4), fun = "mean")
expect_s3_class(bar_plots, "ggplot")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.