Nothing
set.seed(32)
reg_dis = reg_distinction(vr[1:2, ], volcano)
test_that("reg_distinction works", {
expect_equal(mean(reg_dis), 1.95, tolerance = 0.01)
})
set.seed(32)
reg_dis2 = reg_distinction(vo[c(99, 453), ], ortho, sample_size = 0.5)
test_that("reg_distinction works for 3D data", {
expect_true(reg_dis2[1] > reg_dis2[2])
})
# reg_iso2 = reg_isolation(vo, ortho, sample_size = 500)
# reg_iso2
# reg_dis2 = reg_distinction(vo, ortho, sample_size = 50)
# plot(ortho)
# plot(reg_dis2["dis"], add = TRUE)
# library(terra)
# library(tmap)
# ta = rast(system.file("raster/ta_scaled.tif", package = "spquery")) |>
# aggregate(fact = 8, fun = "median", na.rm = TRUE)
# pr = rast(system.file("raster/pr_scaled.tif", package = "spquery")) |>
# aggregate(fact = 8, fun = "median", na.rm = TRUE)
# #
# # plot(pr, range = c(0, 1))
# tp = supercells::supercells(ta, k = 7, compactness = 0.4)
# tm_shape(pr) + tm_raster(col.legend = tm_legend(show = FALSE)) +
# tm_shape(tp) + tm_borders(lwd = 4, col = "black")
#
# set.seed(32)
# tp_dis = reg_distinction(tp, pr)
# tp_dis2 = reg_distinction(tp, pr, dist_fun = "dtw", ndim = 1)
# tp_dis3 = reg_distinction(tp, pr, dist_fun = "dtw", ndim = 2)
# tp_dis4 = reg_distinction(tp, pr, dist_fun = "dtw", ndim = 2, normalize = TRUE)
# tp_dis5 = reg_distinction(tp, pr, dist_fun = "euclidean") #philentropy
# tp_dis6 = reg_distinction(tp, pr, dist_fun = "Euclidean") #proxy
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.