Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, message = FALSE---------------------------------------------------
library(regressinator)
library(dplyr)
library(ggplot2)
library(broom)
## -----------------------------------------------------------------------------
logistic_pop <- population(
x1 = predictor(rnorm, mean = 0, sd = 10),
x2 = predictor(runif, min = 0, max = 10),
y = response(0.7 + 0.2 * x1 + x1^2 / 100 - 0.2 * x2,
family = binomial(link = "logit"))
)
logistic_data <- sample_x(logistic_pop, n = 100) |>
sample_y()
fit <- glm(y ~ x1 + x2, data = logistic_data, family = binomial)
## ----fig.width=4, fig.height=3------------------------------------------------
logistic_data |>
bin_by_quantile(x1, breaks = 6) |>
summarize(x = mean(x1),
response = empirical_link(y, binomial)) |>
ggplot(aes(x = x, y = response)) +
geom_point() +
labs(x = "X1", y = "logit(Y)")
## ----fig.width=4, fig.height=3------------------------------------------------
logistic_data |>
bin_by_quantile(x2, breaks = 6) |>
summarize(x = mean(x2),
response = empirical_link(y, binomial)) |>
ggplot(aes(x = x, y = response)) +
geom_point() +
labs(x = "X2", y = "logit(Y)")
## ----fig.width=5, fig.height=4------------------------------------------------
augment(fit) |>
ggplot(aes(x = .fitted, y = .std.resid)) +
geom_point() +
geom_smooth(se = FALSE) +
labs(x = "Fitted value", y = "Residual")
## ----fig.width=6, fig.height=4------------------------------------------------
augment_longer(fit) |>
ggplot(aes(x = .predictor_value, y = .std.resid)) +
geom_point() +
geom_smooth(se = FALSE) +
facet_wrap(vars(.predictor_name), scales = "free_x") +
labs(x = "Predictor", y = "Residual")
## ----fig.width=6, fig.height=4------------------------------------------------
augment_longer(fit, type.predict = "response") |>
ggplot(aes(x = .predictor_value)) +
geom_point(aes(y = y)) +
geom_smooth(aes(y = .fitted), color = "red") +
geom_smooth(aes(y = y)) +
facet_wrap(vars(.predictor_name), scales = "free_x") +
labs(x = "Predictor", y = "Y")
## ----fig.width=6, fig.height=4------------------------------------------------
partial_residuals(fit) |>
ggplot(aes(x = .predictor_value, y = .partial_resid)) +
geom_point() +
geom_smooth() +
geom_line(aes(x = .predictor_value, y = .predictor_effect)) +
facet_wrap(vars(.predictor_name), scales = "free") +
labs(x = "Predictor", y = "Partial residual")
## ----fig.width=5, fig.height=3------------------------------------------------
binned_residuals(fit) |>
ggplot(aes(x = predictor_mean, y = resid_mean)) +
facet_wrap(vars(predictor_name), scales = "free") +
geom_point() +
labs(x = "Predictor", y = "Residual mean")
## ----fig.width=5, fig.height=3------------------------------------------------
binned_residuals(fit, predictor = .fitted) |>
ggplot(aes(x = predictor_mean, y = resid_mean)) +
geom_point() +
labs(x = "Fitted values", y = "Residual mean")
## ----rqr-fitted, fig.width=5, fig.height=4------------------------------------
augment_quantile(fit) |>
ggplot(aes(x = .fitted, y = .quantile.resid)) +
geom_point() +
geom_smooth(se = FALSE) +
labs(x = "Fitted value", y = "Randomized quantile residual")
## ----rqr-predictors, fig.width=6, fig.height=4--------------------------------
augment_quantile_longer(fit) |>
ggplot(aes(x = .predictor_value, y = .quantile.resid)) +
geom_point() +
geom_smooth(se = FALSE) +
facet_wrap(vars(.predictor_name), scales = "free_x") +
labs(x = "Predictor", y = "Randomized quantile residual")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.