Nothing
## ----setup, echo=FALSE, results="hide"----------------------------------------
knitr::opts_chunk$set(tidy=FALSE, cache=TRUE,
dev="png",
package.startup.message = FALSE,
message=FALSE, error=FALSE, warning=TRUE)
## ----rema---------------------------------------------------------------------
library(remaCor)
library(metafor)
library(mvtnorm)
library(clusterGeneration )
# sample size
n = 30
# number of response variables
m = 2
# Error covariance
Sigma = genPositiveDefMat(m)$Sigma
# regression parameters
beta = matrix(0, 1, m)
# covariates
X = matrix(rnorm(n), ncol=1)
# Simulate response variables
Y = X %*% beta + rmvnorm(n, sigma = Sigma)
# Multivariate regression
fit = lm(Y ~ X)
# Correlation between residuals
C = cor(residuals(fit))
# Extract effect sizes and standard errors from model fit
df = lapply(coef(summary(fit)), function(a)
data.frame(beta = a["X", 1], se = a["X", 2]))
df = do.call(rbind, df)
# Standard fixed effects meta-analysis
# of independent effects with metafor pacakge
rma( df$beta, sei=df$se, method="FE")
# Standard random effects meta-analysis
# of independent effects with metafor pacakge
rma( df$beta, sei=df$se, method="REML")
# Run fixed effects meta-analysis, assume identity correlation
# Use Lin-Sullivan method
LS( df$beta, df$se)
# Run fixed effects meta-analysis, accounting for correlation
# Use Lin-Sullivan method
LS( df$beta, df$se, C)
# Run random effects meta-analysis, assume identity correlation
RE2C( df$beta, df$se)
# Run random effects meta-analysis, accounting for correlation
RE2C( df$beta, df$se, C)
## ----out, echo=FALSE----------------------------------------------------------
RE2C( df$beta, df$se, C)
## ----sessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.