Nothing
## ----global_options, include=FALSE--------------------------------------------
library(knitr)
knitr::opts_chunk$set(
fig.width = 8, fig.height = 7, warning = FALSE,
message = FALSE, out.width = "70%"
)
knitr::opts_knit$set(root.dir = tempdir())
pkgs <- c("ggplot2")
successfully_loaded <- vapply(pkgs, requireNamespace, FUN.VALUE = logical(1L), quietly = TRUE)
can_evaluate <- all(successfully_loaded)
if (can_evaluate) {
knitr::opts_chunk$set(eval = TRUE)
vapply(pkgs, require, FUN.VALUE = logical(1L), quietly = TRUE, character.only = TRUE)
} else {
knitr::opts_chunk$set(eval = FALSE)
}
## -----------------------------------------------------------------------------
data("mtcars")
head(mtcars)
## -----------------------------------------------------------------------------
library(rempsyc)
## -----------------------------------------------------------------------------
install_if_not_installed("ggplot2")
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg"
)
## ----eval = FALSE-------------------------------------------------------------
# ### Save a high-resolution image file to specified directory
# ggplot2::ggsave("nice_scatterplothere.pdf",
# width = 7, height = 7,
# unit = "in", dpi = 300
# )
# # Change the path to where you would like to save it.
# # If you copy-paste your path name, remember to
# # use "R" slashes ('/' rather than '\').
# # Also remember to specify the .tiff extension of the file.
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
ytitle = "Miles/(US) gallon",
xtitle = "Weight (1000 lbs)"
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
has.jitter = TRUE
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
alpha = 1
) # default is 0.7
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
has.points = FALSE,
has.jitter = FALSE
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
has.confband = TRUE
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
xmin = 1,
xmax = 6,
xby = 1,
ymin = 10,
ymax = 35,
yby = 5
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
colours = "blueviolet"
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
has.r = TRUE,
has.p = TRUE
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
has.r = TRUE,
r.x = 4,
r.y = 25,
has.p = TRUE,
p.x = 5,
p.y = 20
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl"
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.fullrange = TRUE
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
groups.order = c(8, 4, 6)
)
# These are the levels of 'mtcars$cyl', so we place lvl 8
# first, then lvl 4, etc.
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
groups.labels = c("Weak", "Average", "Powerful")
)
# Warning: This applies after changing order of level
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
legend.title = "Cylinders"
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
colours = c("burlywood", "darkgoldenrod", "chocolate")
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.linetype = TRUE
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.shape = TRUE
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
legend.title = "Cylinders",
has.linetype = TRUE,
has.shape = TRUE,
colours = rep("black", 3)
)
## -----------------------------------------------------------------------------
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
ytitle = "Miles/(US) gallon",
xtitle = "Weight (1000 lbs)",
has.points = FALSE,
has.jitter = TRUE,
alpha = 1,
has.confband = TRUE,
has.fullrange = FALSE,
group = "cyl",
has.linetype = TRUE,
has.shape = TRUE,
xmin = 1,
xmax = 6,
xby = 1,
ymin = 10,
ymax = 35,
yby = 5,
has.r = TRUE,
has.p = TRUE,
r.x = 5.5,
r.y = 25,
colours = c("burlywood", "darkgoldenrod", "chocolate"),
legend.title = "Cylinders",
groups.labels = c("Weak", "Average", "Powerful")
)
## -----------------------------------------------------------------------------
# This simply copies the 'mtcars' dataset
new.Data <- mtcars
# That would be your "Group" variable normally
# And this operation fills all cells of that column with the word
# "Average" to identify our new 'group'
new.Data$cyl <- "Average"
# This adds the new "Average" group rows to the original data rows
XData <- rbind(mtcars, new.Data)
## -----------------------------------------------------------------------------
(p <- nice_scatter(
data = XData,
predictor = "wt",
response = "mpg",
has.points = FALSE,
group = "cyl",
colours = c("black", "#00BA38", "#619CFF", "#F8766D"),
# We add colours manually because we want average to be black to stand out
groups.order = c("Average", "4", "6", "8"),
# We do this to have average on top since it's the most important
groups.alpha = c(1, 0.5, 0.5, 0.5)
))
# This adds 50% transparency to all lines except
# the first one (Average) which is 100%
## -----------------------------------------------------------------------------
library(ggplot2)
p + geom_point(
data = mtcars,
size = 2,
alpha = 0.5,
shape = 16,
# We use shape 16 because the default shape 19 sometimes
# causes problems when exporting to PDF
mapping = aes(
x = wt,
y = mpg,
colour = factor(cyl),
fill = factor(cyl)
)
)
## -----------------------------------------------------------------------------
(p <- nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
has.points = FALSE,
has.legend = TRUE,
# Important argument! Else the next legend won't appear on the second layer!
colours = "black"
))
## -----------------------------------------------------------------------------
p + geom_point(
data = mtcars,
size = 2,
alpha = 0.5,
shape = 16,
mapping = aes(
x = wt,
y = mpg,
colour = factor(cyl)
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.