Nothing
# Condition 1: Directed events, tie-oriented model with active risk set
# Small edgelist
edgelist <- data.frame(
time = 1:5,
actor1 = c(1, 1, 2, 2, 3),
actor2 = c(2, 3, 1, 3, 2)
)
# Actor info
info <- data.frame(
name = 1:3,
time = rep(0, 3),
x1 = c(10, 20, 30),
x2 = c(0, 1, 1)
)
info2 <- data.frame(
name = 1:3,
time = rep(3, 3),
x1 = c(100, 200, 300),
x2 = c(1, 1, 0)
)
info <- rbind(info, info2)
# Statistics
reh <- remify::remify(edgelist, model = "tie", riskset = "active")
effects <- ~ send(variable = "x1") + receive(variable = "x1") +
average(variable = "x1") + difference(variable = "x1") +
maximum(variable = "x1") + minimum(variable = "x1") +
same(variable = "x2")
stats <- remstats(reh, tie_effects = effects, attr_actors = info)
riskset <- attr(stats, "riskset")
# Baseline
expect_equal(stats[, , "baseline"], matrix(1, nrow = nrow(edgelist), ncol = nrow(riskset)))
# send
send <- rbind(
c(10, 10, 20, 20, 30),
c(10, 10, 20, 20, 30),
c(100, 100, 200, 200, 300),
c(100, 100, 200, 200, 300),
c(100, 100, 200, 200, 300)
)
expect_equal(stats[, , "send_x1"], send)
# receive
receive <- rbind(
c(20, 30, 10, 30, 20),
c(20, 30, 10, 30, 20),
c(200, 300, 100, 300, 200),
c(200, 300, 100, 300, 200),
c(200, 300, 100, 300, 200)
)
expect_equal(stats[, , "receive_x1"], receive)
# average
average <- rbind(
c(15, 20, 15, 25, 25),
c(15, 20, 15, 25, 25),
c(150, 200, 150, 250, 250),
c(150, 200, 150, 250, 250),
c(150, 200, 150, 250, 250)
)
expect_equal(stats[, , "average_x1"], average)
# difference
difference <- rbind(
c(10, 20, 10, 10, 10),
c(10, 20, 10, 10, 10),
c(100, 200, 100, 100, 100),
c(100, 200, 100, 100, 100),
c(100, 200, 100, 100, 100)
)
expect_equal(stats[, , "difference_x1"], difference)
# maximum
maximum <- rbind(
c(20, 30, 20, 30, 30),
c(20, 30, 20, 30, 30),
c(200, 300, 200, 300, 300),
c(200, 300, 200, 300, 300),
c(200, 300, 200, 300, 300)
)
expect_equal(stats[, , "maximum_x1"], maximum)
# minimum
minimum <- rbind(
c(10, 10, 10, 20, 20),
c(10, 10, 10, 20, 20),
c(100, 100, 100, 200, 200),
c(100, 100, 100, 200, 200),
c(100, 100, 100, 200, 200)
)
expect_equal(stats[, , "minimum_x1"], minimum)
# same
same <- rbind(
c(0, 0, 0, 1, 1),
c(0, 0, 0, 1, 1),
c(1, 0, 1, 0, 0),
c(1, 0, 1, 0, 0),
c(1, 0, 1, 0, 0)
)
expect_equal(stats[, , "same_x2"], same)
# test difference absolute = FALSE
effects3 <- ~ difference(variable = "x1", absolute = FALSE)
stats3 <- remstats(reh, tie_effects = effects3, attr_actors = info)
difference <- rbind(
c(-10, -20, 10, -10, 10),
c(-10, -20, 10, -10, 10),
c(-100, -200, 100, -100, 100),
c(-100, -200, 100, -100, 100),
c(-100, -200, 100, -100, 100)
)
expect_equal(stats3[, , "difference_x1"], difference)
# test standardization
std_effects <- ~
send(variable = "x1", scaling = "std") +
receive(variable = "x1", scaling = "std") +
average(variable = "x1", scaling = "std") +
difference(variable = "x1", scaling = "std") +
maximum(variable = "x1", scaling = "std") +
minimum(variable = "x1", scaling = "std")
std_stats <- remstats(reh, tie_effects = std_effects, attr_actors = info)
sapply(2:dim(std_stats)[3], function(p) {
stat_name <- dimnames(std_stats)[[3]][p]
scaled_original <- t(apply(stats[,,stat_name], 1, scale))
scaled_original[which(apply(stats[,,stat_name], 1, sd) == 0),] <-
rep(0, ncol(stats))
expect_equal(std_stats[,,stat_name], scaled_original)
})
# Test method -------------------------------------------------------------
# Small change to the times in the edgelist
edgelist <- data.frame(
time = c(1, 2, 3, 3, 4),
actor1 = c(1, 1, 2, 2, 3),
actor2 = c(2, 3, 1, 3, 2)
)
reh <- remify::remify(edgelist, model = "tie", riskset = "active")
# Method = "pt"
# Selection of effects that have unique underlying cpp functions
effects <- ~ send(variable = "x1") +
average(variable = "x1")
pt_stats <- remstats(reh, tie_effects = effects, attr_actors = info,
method = "pt")
riskset <- attr(pt_stats, "riskset")
# send
send <- rbind(
c(10, 10, 20, 20, 30),
c(10, 10, 20, 20, 30),
c(100, 100, 200, 200, 300),
c(100, 100, 200, 200, 300)
)
expect_equal(pt_stats[, , "send_x1"], send)
# average
average <- rbind(
c(15, 20, 15, 25, 25),
c(15, 20, 15, 25, 25),
c(150, 200, 150, 250, 250),
c(150, 200, 150, 250, 250)
)
expect_equal(pt_stats[, , "average_x1"], average)
# Method = "pe"
# Selection of effects that have unique underlying cpp functions
effects <- ~ send(variable = "x1") +
average(variable = "x1")
pe_stats <- remstats(reh, tie_effects = effects, attr_actors = info,
method = "pe")
riskset <- attr(pt_stats, "riskset")
# send
send <- rbind(
c(10, 10, 20, 20, 30),
c(10, 10, 20, 20, 30),
c(100, 100, 200, 200, 300),
c(100, 100, 200, 200, 300),
c(100, 100, 200, 200, 300)
)
expect_equal(pe_stats[, , "send_x1"], send)
# average
average <- rbind(
c(15, 20, 15, 25, 25),
c(15, 20, 15, 25, 25),
c(150, 200, 150, 250, 250),
c(150, 200, 150, 250, 250),
c(150, 200, 150, 250, 250)
)
expect_equal(pe_stats[, , "average_x1"], average)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.