| biv.betab | R Documentation | 
biv.betab fits dependent (logit) linear regression models to a
bivariate beta-binomial distribution.
biv.betab(
  freq,
  x = NULL,
  p,
  depend = TRUE,
  print.level = 0,
  typsize = abs(p),
  ndigit = 10,
  gradtol = 1e-05,
  stepmax = 10 * sqrt(p %*% p),
  steptol = 1e-05,
  iterlim = 100,
  fscale = 1
)
freq | 
 A matrix containing four columns corresponding to 00, 01, 10, and 11 responses.  | 
x | 
 A matrix of explanatory variables, containing pairs of columns, one for each response, and the same number of rows as freq.  | 
p | 
 Initial parameter estimates: intercept, dependence (if depend is TRUE, and one for each pair of columns of x.  | 
depend | 
 If FALSE, the independence (logistic) model is fitted.  | 
print.level | 
 Arguments for nlm.  | 
typsize | 
 Arguments for nlm.  | 
ndigit | 
 Arguments for nlm.  | 
gradtol | 
 Arguments for nlm.  | 
stepmax | 
 Arguments for nlm.  | 
steptol | 
 Arguments for nlm.  | 
iterlim | 
 Arguments for nlm.  | 
fscale | 
 Arguments for nlm.  | 
A list of class bivbetab is returned.
J.K. Lindsey
y <- matrix(  c( 2, 1, 1,13,
		 4, 1, 3, 5,
		 3, 3, 1, 4,
		15, 8, 1, 6),ncol=4,byrow=TRUE)
first <- c(0,0,1,1)
second <- c(0,1,0,1)
self <- cbind(first,second)
other <- cbind(second,first)
biv.betab(y,cbind(self,other),p=c(-1,2,1,1))
# independence
biv.betab(y,cbind(self,other),p=c(-1,1,1),dep=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.