| simulateRandomizedDesignEffectSizes | R Documentation | 
This simulates one of four data distributions (normal, log-normal, gamma and Laplace), and finds the values of phat and Cliffs d and their variances. It assumes equal group sizes. It returns values of the effect sizes and their variance for a simulated randomized experiment with two treatments. It returns whether or not each non-parametric effect size was significant. It also returns the parametric (standardized and unstandardized) Effect Size and the whether the t-test was significant.
simulateRandomizedDesignEffectSizes(
  mean,
  sd,
  diff,
  N,
  type = "n",
  StdAdj = 0,
  alpha = 0.05,
  AlwaysTwoSidedTests = FALSE,
  Return.Data = FALSE
)
| mean | The mean used for one of the treatment groups (this is the rate for the gamma data) | 
| sd | The spread used for both treatment groups. It mus be a real value greater than 0 (this is the shape for the gamma data). | 
| diff | This is added to the parameter mean, to define the mean of the other treatment group. It can be a real value avd can take the value zero. | 
| N | this is the number of observations in each group. It must be an integer greater than 3. | 
| type | this specifies the underlying distribution used to generate the data. it takes the values 'n' for a normal distribution, 'l' for lognormal distribution,'g' for a gamma distribution, 'lap' for a Laplace distribution. | 
| StdAdj | this specifies the extent of variance instability to be introduced. | 
| alpha | the level for all statistical tests (default 0.05) | 
| AlwaysTwoSidedTests | if set to FALSE (i.e. default) the algorithms uses one-sided tests if diff!=0 and two-sided tests otherwise. If set to TRUE the algorithm always uses two-sided tests. | 
| Return.Data | if set to true the algorithm returns the data not the effect sizes (default FALSE). | 
data frame incl. the non-parametric and parametric effect sizes and whether the effect sizes are significant at the specified alpha level. For log-normal data the function returns the effect sizes for the transformed data.
Barbara Kitchenham and Lech Madeyski
set.seed(123)
as.data.frame(
  simulateRandomizedDesignEffectSizes(
    mean = 0, sd = 1, diff = 0.8, N = 10, type = "n", StdAdj = 0))
#   phat    varphat   dfphat sigphat   d       vard sigd       cor     varcor sigCVt  t.value
# 1 0.75 0.01522222 17.46405    TRUE 0.5 0.06237576 TRUE 0.2631579 0.01754995   TRUE 2.095142
#      t.se     t.df      t.lb t.ub t.sig        ES  Variance     StdES  MedDiff
# 1 0.4457915 17.87244 0.1606665  Inf  TRUE 0.9339963 0.9936502 0.9369759 1.260127
set.seed(123)
as.data.frame(
  simulateRandomizedDesignEffectSizes(
    mean = 0, sd = 1, diff = 0.8, N = 10, type = "n", StdAdj = 0,
    AlwaysTwoSidedTests = TRUE))
#  phat    varphat   dfphat sigphat   d       vard  sigd       cor
# 1 0.75 0.01522222 17.46405   FALSE 0.5 0.06237576 FALSE 0.2631579
#      varcor sigCVt  t.value      t.se     t.df         t.lb     t.ub t.sig
# 1 0.01754995  FALSE 2.095142 0.4457915 17.87244 -0.003056196 1.871049 FALSE
#         ES  Variance     StdES  MedDiff
# 1 0.9339963 0.9936502 0.9369759 1.260127
set.seed(456)
as.data.frame(
  simulateRandomizedDesignEffectSizes(
    mean = 0, sd = 1, diff = 0.8, N = 10, type = "l", StdAdj = 0))
# phat     varphat  dfphat sigphat    d      vard sigd       cor     varcor
# 1 0.87 0.008466667 11.1111    TRUE 0.74 0.0350497 TRUE 0.3894737 0.01039674
#  sigCVt  t.value     t.se     t.df     t.lb t.ub t.sig       ES Variance
# 1   TRUE 3.599375 2.148297 9.312472 3.809448  Inf  TRUE 7.732529 23.07591
#    StdES MedDiff transttest  EStrans StdEStrans VarTrans
# 1 1.60969 7.77893   0.998772 1.731323   1.598065 1.173728
set.seed(123)
as.data.frame(
  simulateRandomizedDesignEffectSizes(
    mean = 0, sd = 1, diff = 0.8, N = 10, type = "n", StdAdj = 0,
    Return.Data = TRUE))
#   BaselineData AlternativeData
# 1   -0.69470698       1.0533185
# 2   -0.20791728       0.7714532
# 3   -1.26539635       0.7571295
# 4    2.16895597       2.1686023
# 5    1.20796200       0.5742290
# 6   -1.12310858       2.3164706
# 7   -0.40288484      -0.7487528
# 8   -0.46665535       1.3846137
# 9    0.77996512       0.9238542
# 10  -0.08336907       1.0159416
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.