createNode | R Documentation |
Function to create some node
createNode(
nodeType = c("Ridge"),
units = NULL,
lr = 1,
sr = NULL,
otputDim = NULL,
inputDim = NULL,
name = NULL,
ridge = 0,
inputBias = TRUE,
input_scaling = TRUE,
input_connectivity = 0.1,
rc_connectivity = 0.1,
activation = "tanh",
dtype = "float64",
seed = NULL,
...
)
nodeType |
Type of node. Default is |
units |
(int) optional
Number of reservoir units. If None, the number of units will be infered from
the |
lr |
(float) default to 1.0
Neurons leak rate. Must be in :math: |
sr |
(float) optional Spectral radius of recurrent weight matrix. |
otputDim |
Output dimension of the Node. Dimension of its state. |
inputDim |
Input dimension of the Node. |
name |
Name of the Node. It must be a unique identifier. |
ridge |
float, default to |
inputBias |
bool, default to |
input_scaling |
float or array-like of shapes (features), default to |
input_connectivity |
float, default to 0.1. Connectivity of input neurons, i.e. ratio of input neurons connected to reservoir neurons. Must be between 0 and 1. |
rc_connectivity |
float, default to 0.1. Connectivity of recurrent weight matrix, i.e. ratio of reservoir neurons connected to other reservoir neurons, including themselves. Must be between 0 and 1. |
activation |
str 'tanh'. Reservoir units activation function. Should be a activationsfunc function name ('tanh', 'identity', 'sigmoid', 'relu', 'softmax', 'softplus'). |
dtype |
Numerical type for node parameters |
seed |
set random seed |
... |
Others params |
A node generated by reservoirpy python module.
if(interactive()){
readout <- reservoirnet::createNode("Ridge")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.