Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"#,
#fig.path = "vig/"
)
options(rmarkdown.html_vignette.check_title = FALSE)
## ----eval = FALSE,message=FALSE-----------------------------------------------
# # install.packages("reslr")
# # library(devtools)
# # devtools::install()
# #devtools::install_github("maeveupton/reslr")
# install_github("maeveupton/reslr")
## ---- readpkg,eval = TRUE, message=FALSE--------------------------------------
library(reslr)
## ---- example1site,eval = TRUE------------------------------------------------
# For 1 site
data_1site <- reslr::NAACproxydata %>% dplyr::filter(Site == "Cedar Island")
# For multiple sites
data_multisite <- reslr::NAACproxydata %>% dplyr::filter(Site %in% c(
"Snipe Key", "Cheesequake",
"Placentia", "Leeds Point"
))
## ---- example1dataagain, eval = TRUE------------------------------------------
# For 1 site
CedarIslandNC <- NAACproxydata %>% dplyr::filter(Site == "Cedar Island")
## ---- loadslr, eval = TRUE----------------------------------------------------
CedarIslandNC_input <- reslr_load(
data = CedarIslandNC,
include_tide_gauge = FALSE,
include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
input_age_type = "CE",
sediment_average_TG = 10
)
## ---- slrdata,eval=TRUE-------------------------------------------------------
data <- CedarIslandNC_input$data
## ---- datagridslr, eval = TRUE------------------------------------------------
data_grid <- CedarIslandNC_input$data_grid
## ---- printdata, eval=TRUE----------------------------------------------------
print(CedarIslandNC_input)
## ---- plotdata,fig.align = 'center',fig.width = 7,fig.height = 5,eval = TRUE----
plot(
x = CedarIslandNC_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_tide_gauges = FALSE,
plot_proxy_records = TRUE,
plot_caption = TRUE
)
## ---- runslr,eval = TRUE------------------------------------------------------
res_eiv_slr_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "eiv_slr_t",
CI = 0.95
)
## ---- printrunslr,eval=TRUE---------------------------------------------------
print(res_eiv_slr_t)
## ---- summaryslr, eval = TRUE-------------------------------------------------
summary(res_eiv_slr_t)
## ---- runslrmoreit,eval = FALSE-----------------------------------------------
# res_eiv_slr_t <- reslr_mcmc(
# input_data = CedarIslandNC_input,
# model_type = "eiv_slr_t",
# # Update these values
# n_iterations = 6000, # Number of iterations
# n_burnin = 1000, # Number of iterations to discard at the beginning
# n_thin = 4, # Reduces number of output samples to save memory and computation time
# n_chains = 3 # Number of Markov chains
# )
## ---- plotslrres, fig.align = 'center',fig.width = 7,fig.height = 5,eval = TRUE----
plot(res_eiv_slr_t,
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)"
)
## ---- dataframeslrres, eval = TRUE--------------------------------------------
output_dataframes <- res_eiv_slr_t$output_dataframes
head(output_dataframes)
## ----exampledata1, eval = TRUE------------------------------------------------
# For 1 site
CedarIslandNC <- reslr::NAACproxydata %>% dplyr::filter(Site == "Cedar Island")
## ----loaddatacp, eval = TRUE--------------------------------------------------
CedarIslandNC_input <- reslr_load(
data = CedarIslandNC,
include_tide_gauge = FALSE,
include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10
)
## ----datacp,eval=TRUE---------------------------------------------------------
data <- CedarIslandNC_input$data
head(data)
## ----datagridcp, eval = TRUE--------------------------------------------------
data_grid <- CedarIslandNC_input$data_grid
head(data_grid)
## ----printcp, eval=TRUE-------------------------------------------------------
print(CedarIslandNC_input)
## ----plotdatacp,fig.align = 'center',fig.width = 7,fig.height = 5,eval = TRUE----
plot(
x = CedarIslandNC_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE
)
## ----runcp1, eval = TRUE------------------------------------------------------
res_eiv_cp1_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "eiv_cp_t",
n_cp = 1,
CI = 0.95
)
## ----runcp2, eval = FALSE-----------------------------------------------------
# res_eiv_cp2_t <- reslr_mcmc(
# input_data = CedarIslandNC_input,
# model_type = "eiv_cp_t",
# n_cp = 2, # Updating the default setting to include an additional change point.
# CI = 0.95
# )
## ----printcpout, eval=TRUE----------------------------------------------------
print(res_eiv_cp1_t)
## ----summarycp, eval = TRUE---------------------------------------------------
summary(res_eiv_cp1_t)
## ----runcpmoreit,eval = FALSE-------------------------------------------------
# res_eiv_cp1_t <- reslr_mcmc(
# input_data = CedarIslandNC_input,
# model_type = "eiv_cp_t",
# # Update these values
# n_iterations = 6000, # Number of iterations
# n_burnin = 1000, # Number of iterations to discard at the beginning
# n_thin = 4, # Reduces number of output samples to save memory and computation time
# n_chains = 3 # Number of Markov chains
# )
## ---- plotcpres, fig.align = 'center',fig.width = 7,fig.height = 5,eval = TRUE----
plot(res_eiv_cp1_t,
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
)
## ----cpdataframe, eval = TRUE-------------------------------------------------
output_dataframes <- res_eiv_cp1_t$output_dataframes
head(output_dataframes)
## ----exampledataset2 ,eval = TRUE---------------------------------------------
# For 1 site
CedarIslandNC <- reslr::NAACproxydata %>% dplyr::filter(Site == "Cedar Island")
## ---- loadigp ,eval = TRUE----------------------------------------------------
CedarIslandNC_input <- reslr_load(
data = CedarIslandNC,
include_tide_gauge = FALSE,
include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10
)
## ----dataigp,eval=FALSE-------------------------------------------------------
# data <- CedarIslandNC_input$data
## ----datagridigp, eval = FALSE------------------------------------------------
# data_grid <- CedarIslandNC_input$data_grid
## ----printigp, eval=TRUE------------------------------------------------------
print(CedarIslandNC_input)
## ---- plotigpdata,fig.align = 'center',fig.width = 7,fig.height = 5,eval = TRUE----
plot(
x = CedarIslandNC_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE
)
## ----runigp, eval = FALSE-----------------------------------------------------
# res_eiv_igp_t <- reslr_mcmc(
# input_data = CedarIslandNC_input,
# model_type = "eiv_igp_t",
# CI = 0.95,
#
# )
## ----printigpout, eval=FALSE--------------------------------------------------
# print(res_eiv_igp_t)
## ----summaryigp, eval = FALSE-------------------------------------------------
# summary(res_eiv_igp_t)
## ----runigpmore, eval = FALSE-------------------------------------------------
# res_eiv_igp_t <- reslr_mcmc(
# input_data = CedarIslandNC_input,
# model_type = "eiv_igp_t",
# # Update these values
# n_iterations = 6000, # Number of iterations
# n_burnin = 1000, # Number of iterations to discard at the beginning
# n_thin = 4, # Reduces number of output samples to save memory and computation time
# n_chains = 3 # Number of Markov chains
# )
## ----plotigpres, fig.align = 'center',fig.width = 7,fig.height = 5,eval = FALSE----
# plot(res_eiv_igp_t,
# plot_type = "model_fit_plot",
# xlab = "Year (CE)",
# ylab = "Relative Sea Level (m)",
# plot_proxy_records = TRUE,
# plot_tide_gauges = FALSE
# )
## ----plotigpres_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
url <- "https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotigpres-1.png"
knitr::include_graphics(url)
## ----plotigpresrate, fig.align = 'center',fig.width = 7,fig.height = 5,eval = FALSE----
# plot(res_eiv_igp_t,
# plot_type = "rate_plot",
# xlab = "Year (CE)",
# y_rate_lab = "Rate of Change (mm per year)"
# )
## ----plotigpresrate_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
url <- "https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotigpresrate-1.png"
knitr::include_graphics(url)
## ----igpdataout, eval = FALSE-------------------------------------------------
# output_dataframes <- res_eiv_igp_t$output_dataframes
## ---- dataexample3,eval = TRUE------------------------------------------------
# For 1 site
CedarIslandNC <- reslr::NAACproxydata %>% dplyr::filter(Site == "Cedar Island")
## ----loadspt, eval = TRUE-----------------------------------------------------
CedarIslandNC_input <- reslr_load(
data = CedarIslandNC,
include_tide_gauge = FALSE,
include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10
)
## ----dataspt, eval=TRUE-------------------------------------------------------
data <- CedarIslandNC_input$data
## ----datagridspt, eval = TRUE-------------------------------------------------
data_grid <- CedarIslandNC_input$data_grid
## ----printspt, eval=TRUE------------------------------------------------------
print(CedarIslandNC_input)
## ----plotspt,fig.align = 'center',fig.width = 7,fig.height = 5,eval = TRUE----
plot(
x = CedarIslandNC_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE
)
## ----runspt,eval = TRUE,message=FALSE,results='hide'--------------------------
res_ni_spline_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "ni_spline_t",
CI = 0.95
)
## ----printresspt, eval=TRUE---------------------------------------------------
print(res_ni_spline_t)
## ----summaryspt, eval = TRUE--------------------------------------------------
summary(res_ni_spline_t)
## ---- runsptmore,eval = FALSE-------------------------------------------------
# res_ni_spline_t <- reslr_mcmc(
# input_data = CedarIslandNC,
# model_type = "ni_spline_t",
# # Update these values
# n_iterations = 6000, # Number of iterations
# n_burnin = 1000, # Number of iterations to discard at the beginning
# n_thin = 4, # Reduces number of output samples to save memory and computation time
# n_chains = 3 # Number of Markov chains
# )
## ---- plotsptres,fig.align = 'center',fig.width = 7,fig.height = 5,eval = TRUE----
plot(res_ni_spline_t,
plot_type = "model_fit_plot",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)"
)
## ----plotsptresrate, fig.align = 'center',fig.width = 7,fig.height = 5,eval = TRUE----
plot(res_ni_spline_t,
plot_type = "rate_plot",
xlab = "Year (CE)",
y_rate_lab = "Rate of Change (mm per year)"
)
## ----outdfspt, eval = TRUE----------------------------------------------------
output_dataframes <- res_ni_spline_t$output_dataframes
head(output_dataframes)
## ----data2sites, eval = TRUE--------------------------------------------------
# For 2 site
multi_site <- reslr::NAACproxydata %>%
dplyr::filter(Site %in% c("Cedar Island", "Nassau"))
## ----loadspst, eval = TRUE----------------------------------------------------
multi_site_input <- reslr_load(
data = multi_site,
include_tide_gauge = FALSE,
include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10
)
## ----dataspst,eval=TRUE-------------------------------------------------------
data <- multi_site_input$data
head(data)
## ----datagridspst, eval = TRUE------------------------------------------------
data_grid <- multi_site_input$data_grid
head(data_grid)
## ----printspst, eval=TRUE-----------------------------------------------------
print(multi_site_input)
## ----plotspst,fig.align = 'center',fig.width = 7,fig.height = 10,eval = TRUE----
plot(
x = multi_site_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE
)
## ----runspst,eval = FALSE,results='hide',message=FALSE------------------------
# res_ni_spline_st <- reslr_mcmc(
# input_data = multi_site_input,
# model_type = "ni_spline_st",
# CI = 0.95
# )
## ----printspstout,eval=FALSE--------------------------------------------------
# print(res_ni_spline_st)
## ----summaryspst, eval = FALSE------------------------------------------------
# summary(res_ni_spline_st)
## ---- runspstmore,eval = FALSE------------------------------------------------
# res_ni_spline_st <- reslr::reslr_mcmc(
# input_data = multi_site_input,
# model_type = "ni_spline_st",
# # Update these values
# n_iterations = 6000, # Number of iterations
# n_burnin = 1000, # Number of iterations to discard at the beginning
# n_thin = 4, # Reduces number of output samples to save memory and computation time
# n_chains = 3 # Number of Markov chains
# )
## ----plotspstres, eval = FALSE,fig.align = 'center',fig.width = 7,fig.height = 5----
# plot(res_ni_spline_st,
# plot_type = "model_fit_plot",
# xlab = "Year (CE)",
# ylab = "Relative Sea Level (m)"
# )
## ----plotspstres_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
url <- "https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotspstres-1.png"
knitr::include_graphics(url)
## ----plotspstresrate, fig.align = 'center',fig.width = 7,fig.height = 5,eval =FALSE,results='hide',message=FALSE----
# plot(res_ni_spline_st,
# plot_type = "rate_plot",
# xlab = "Year (CE)",
# y_rate_lab = "Rate of Change (mm per year)"
# )
## ----plotspstresrate_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
url <- "https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotspstresrate-1.png"
knitr::include_graphics(url)
## ----outdfspst, eval = FALSE--------------------------------------------------
# output_dataframes <- res_ni_spline_st$output_dataframes
## ----data2sitesmore, eval = TRUE----------------------------------------------
# For 9 site
multi_9_sites <- reslr::NAACproxydata %>%
dplyr::filter(Site %in% c(
"Cedar Island", "Nassau", "Snipe Key",
"Placentia", "Cape May Courthouse", "East River Marsh",
"Fox Hill Marsh", "Swan Key", "Big River Marsh"
))
## ----loadnigam, eval = TRUE---------------------------------------------------
multi_9_sites_input <- reslr_load(
data = multi_9_sites,
include_tide_gauge = TRUE,
include_linear_rate = TRUE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = TRUE,
prediction_grid_res = 50,
sediment_average_TG = 10
)
## ----datanigam,eval=FALSE-----------------------------------------------------
# data <- multi_9_sites_input$data
## ----datagridnigam, eval = FALSE----------------------------------------------
# data_grid <- multi_9_sites_input$data_grid
## ----printnigam, eval=TRUE----------------------------------------------------
print(multi_9_sites_input)
## ---- plotnigam,fig.align = 'center',fig.width = 7,fig.height = 10,eval = TRUE----
plot(
x = multi_9_sites_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = TRUE
)
## ----runnigam,eval = FALSE,results='hide',message=FALSE-----------------------
# res_ni_gam_decomp <- reslr_mcmc(
# input_data = multi_9_sites_input,
# model_type = "ni_gam_decomp",
# CI = 0.95
# )
## ----printnigamout, eval=FALSE------------------------------------------------
# print(res_ni_gam_decomp)
## ----summarynigam, eval = FALSE-----------------------------------------------
# summary(res_ni_gam_decomp)
## ---- runnigammore,eval = FALSE-----------------------------------------------
# res_ni_gam_decomp <- reslr_mcmc(
# input_data = multi_9_sites_input,
# model_type = "ni_gam_decomp",
# # Update these values
# n_iterations = 6000, # Number of iterations
# n_burnin = 1000, # Number of iterations to discard at the beginning
# n_thin = 4, # Reduces number of output samples to save memory and computation time
# n_chains = 3 # Number of Markov chains
# )
## ----plotnigamres, eval = FALSE,fig.align = 'center',fig.width = 7,fig.height = 5----
# plot(res_ni_gam_decomp,
# plot_type = "model_fit_plot",
# plot_tide_gauge = FALSE
# )
## ----plotnigamres_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
knitr::include_graphics("https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotnigamres-1.png")
## ----plotnigamresrate, fig.align = 'center',fig.width = 7,fig.height = 5,eval = FALSE----
# plot(res_ni_gam_decomp,
# plot_type = "rate_plot"
# )
## ----plotnigamresrate_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
knitr::include_graphics("https://raw.githubusercontent.com/maeveupton/reslr/main/docs/reslrvigplots/plotnigamresrate-1.png")
## ----totaldf, eval = FALSE----------------------------------------------------
# total_model_fit_df <- res_ni_gam_decomp$output_dataframes$total_model_fit_df
## ----plotnigamregres, fig.align = 'center',fig.width = 7,fig.height = 5,eval = FALSE----
# plot(res_ni_gam_decomp, plot_type = "regional_plot")
## ----plotnigamregres_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
knitr::include_graphics("https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotnigamregres-1.png")
## ----regdf, eval = FALSE------------------------------------------------------
# regional_component_df <- res_ni_gam_decomp$output_dataframes$regional_component_df
## ----plotnigamregresrate, fig.align = 'center',eval = FALSE-------------------
# plot(res_ni_gam_decomp, plot_type = "regional_rate_plot")
## ----plotnigamregresrate_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
knitr::include_graphics("https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotnigamregresrate-1.png")
## ----plotnigamlinres, fig.align = 'center',eval = FALSE-----------------------
# plot(res_ni_gam_decomp, plot_type = "linear_local_plot")
## ----plotnigamlinres_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
url <- "https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotnigamlinres-1.png"
knitr::include_graphics(url)
## ----linlocdf, eval = FALSE---------------------------------------------------
# lin_loc_component_df <- res_ni_gam_decomp$output_dataframes$lin_loc_component_df
## ----linlocrate, eval = FALSE-------------------------------------------------
# lin_loc_component_rates <- lin_loc_component_df %>%
# dplyr::group_by(SiteName) %>%
# dplyr::summarise(
# linear_rate = unique(linear_rate),
# linear_rate_err = unique(linear_rate_err)
# )
## ----plotnigamnonlinres, fig.align = 'center',fig.width = 7,fig.height = 5,eval = FALSE----
# plot(res_ni_gam_decomp, plot_type = "non_linear_local_plot")
## ----plotnigamnonlinres_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
url <- "https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotnigamnonlinres-1.png"
knitr::include_graphics(url)
## ----non_lindf, eval = FALSE--------------------------------------------------
# non_lin_loc_component_df <- res_ni_gam_decomp$output_dataframes$non_lin_loc_component_df
## ----plotnigamnonlinresrate, fig.align = 'center',fig.width = 7,fig.height = 5,eval = FALSE----
# plot(res_ni_gam_decomp, plot_type = "non_linear_local_rate_plot")
## ----plotnigamnonlinresrate_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
url <- "https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotnigamnonlinresrate-1.png"
knitr::include_graphics(url)
## ----plotnigamall, fig.align = 'center',fig.width = 7,fig.height = 5,eval = FALSE,message=FALSE,results='hide'----
# plot(res_ni_gam_decomp, plot_type = "nigam_component_plot")
## ----plotnigamall_load, eval = TRUE,echo=FALSE, fig.align = 'center',out.width="100%"----
url <- "https://raw.githubusercontent.com/maeveupton/reslr/main/reslrvigplots/plotnigamall-1.png"
knitr::include_graphics(url)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.