Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(resquin)
nep_resp_styles <- resp_styles(
x = nep,
scale_min = 1, # minimum response option
scale_max = 5, # maximum response option
min_valid_responses = 1) # default, excludes respondents with any missing value
summary(nep_resp_styles)
## -----------------------------------------------------------------------------
first_flagging <- flag_resp(nep_resp_styles,
ARS > 0.8)
summary(first_flagging)
## -----------------------------------------------------------------------------
nep_resp_patterns <- resp_patterns(nep)
nep_resp_patterns_resp_styles <- cbind(nep_resp_styles,nep_resp_patterns[,-1])
second_flagging <- flag_resp(nep_resp_patterns_resp_styles,
ARS > 0.8,
longest_string_length >= 8)
summary(second_flagging)
## -----------------------------------------------------------------------------
flag_resp(nep_resp_patterns_resp_styles,
ARS > 0.8,
longest_string_length >= 8,
ARS > 0.8 | longest_string_length >= 8) |>
summary()
## -----------------------------------------------------------------------------
random_vector <- sample(c(F,T),1000,replace = T)
random_vector[is.na(nep_resp_styles$ARS)] <- NA # Add missing data as in the other data frames
# example three contains response indicator values per respondent
external_indicator_data <- cbind(
nep_resp_patterns_resp_styles,
new_indicator = random_vector)
flag_resp(external_indicator_data,
ARS > 0.8,
longest_string_length >= 8,
new_indicator == T) |>
summary()
## -----------------------------------------------------------------------------
flag_df <- flag_resp(
nep_resp_patterns_resp_styles,
ARS > 0.8,
longest_string_length >= 8,
ARS > 0.8 | longest_string_length >= 8)
flag_df
## -----------------------------------------------------------------------------
# Exclude the 33 flagged respondents with ARS > 0.8
nep[!flag_df$`ARS > 0.8`,] |>
na.omit() #exclude respondents with missing values
## -----------------------------------------------------------------------------
# Extract only the 33 flagged respondents with ARS 0.8
nep[flag_df$`ARS > 0.8`,] |>
na.omit()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.