Convert RGB three band to single band colour table

Share:

Description

This function converts a three-band SpatialGridDataFrame into a single band of colour indices and a colour look-up table using RGB2PCT. vec2RGB uses given breaks and colours (like image) to make a three column matrix of red, green, and blue values for a numeric vector.

Usage

1
2
SGDF2PCT(x, ncolors = 256, adjust.bands=TRUE)
vec2RGB(vec, breaks, col)

Arguments

x

a three-band SpatialGridDataFrame object

ncolors

a number of colours between 2 and 256

adjust.bands

default TRUE; if FALSE the three bands must lie each between 0 and 255, but will not be streched within those bounds

vec

a numeric vector

breaks

a set of breakpoints for the colours: must give one more breakpoint than colour

col

a list of colors

Value

The value returned is a list:

idx

a vector of colour indices in the same spatial order as the input object

ct

a vector of RGB colours

Author(s)

Roger Bivand

References

http://www.gdal.org/

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
logo <- system.file("pictures/Rlogo.jpg", package="rgdal")[1]
SGlogo <- readGDAL(logo)
cols <- SGDF2PCT(SGlogo)
SGlogo$idx <- cols$idx
image(SGlogo, "idx", col=cols$ct)
SGlogo <- readGDAL(logo)
cols <- SGDF2PCT(SGlogo, ncolors=64)
SGlogo$idx <- cols$idx
image(SGlogo, "idx", col=cols$ct)
SGlogo <- readGDAL(logo)
cols <- SGDF2PCT(SGlogo, ncolors=8)
SGlogo$idx <- cols$idx
image(SGlogo, "idx", col=cols$ct)
data(meuse.grid)
coordinates(meuse.grid) <- c("x", "y")
gridded(meuse.grid) <- TRUE
fullgrid(meuse.grid) <- TRUE
summary(meuse.grid$dist)
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), mar=c(1,1,1,1)+0.1)
image(meuse.grid, "dist", breaks=seq(0,1,1/10), col=bpy.colors(10))
RGB <- vec2RGB(meuse.grid$dist, breaks=seq(0,1,1/10), col=bpy.colors(10))
summary(RGB)
meuse.grid$red <- RGB[,1]
meuse.grid$green <- RGB[,2]
meuse.grid$blue <- RGB[,3]
cols <- SGDF2PCT(meuse.grid[c("red", "green", "blue")], ncolors=10,
 adjust.bands=FALSE)
is.na(cols$idx) <- is.na(meuse.grid$dist)
meuse.grid$idx <- cols$idx
image(meuse.grid, "idx", col=cols$ct)
par(opar)
# Note: only one wrongly classified pixel after NA handling/dropping
# The functions are not written to be reversible
sort(table(findInterval(meuse.grid$dist, seq(0,1,1/10), all.inside=TRUE)))
sort(table(cols$idx))