Implements state-of-the-art Random Graphical Models (RGMs) for multivariate data analysis across multiple environments, offering tools for exploring network interactions and structural relationships. Capabilities include joint inference across environments, integration of external covariates, and a Bayesian framework for uncertainty quantification. Applicable in various fields, including microbiome analysis. Methods based on Vinciotti, V., Wit, E., & Richter, F. (2023). "Random Graphical Model of Microbiome Interactions in Related Environments." <arXiv:2304.01956>.
Package details |
|
---|---|
Author | Francisco Richter [aut, cre], Veronica Vinciotti [ctb], Ernst Wit [ctb] |
Maintainer | Francisco Richter <richtf@usi.ch> |
License | MIT + file LICENSE |
Version | 1.0.4 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.