require(knitr) opts_chunk$set(warning=FALSE, message=FALSE, error=FALSE, dev='png', fig.show='hold')

`rivr`

provides functions for calculating the normal depth and critical depth,
computing gradually-varied flow profiles, and solving the unsteady flow
equations using finite-differencing methods. Outputs are formatted for
manipulation with `dplyr`

and visualization with `ggplot2`

. This vignette
provides a brief introduction to the main functions and example applications.

The `rivr`

package defines a new class `rivr`

, which is essentially an
extension of the `data.frame`

class with additional atributes. The following
methods are defined for class `rivr`

:

`head`

`tail`

`print`

`summary`

`plot`

The normal depth $y_n$ is defined as the flow depth at which
$$
Q = \frac{C_m}{n} AR^{2/3}S_0^{1/2}
$$
Where $Q$ is the flow rate, $n$ is Manning's coefficient, $A$ is the
cross-sectional flow area (also a function of flow depth), $R$ is the
hydraulic radius and $S_0$ is the bed slope. The critical depth $y_c$ is
defined as the flow depth at which
$$
\frac{dE}{dy} = 1 - \frac{Q^2}{gA^3}\frac{dA}{dy} = 0.
$$
Both $y_n$ and $y_c$ are non-linear functions of $y$. `rivr`

provides
functions for computing normal and critical depths, as shown below. In both
cases a Newton-Raphson scheme is used to solved the equations.

require(rivr) flow = 250; mannings = 0.045 ; Cm = 1.486; gravity = 32.2 width = 100; slope = 0.001; sideslope = 0 yn = normal_depth(slope, mannings, flow, yopt = 2, Cm, width, sideslope) yc = critical_depth(flow, yopt = 2, gravity, width, sideslope) print(c(normal.depth = yn, critical.depth = yc))

The standard step method can be used to solve steady-state water surface profiles. The solution to gradually-varied flow profiles is based on the non-linear ordinary differential equation $$ \frac{dy}{dx} = \frac{S_0 - S_f}{1 - Fr^2} $$ and is appropriate for cases where $\frac{dy}{dx}$ is small. The standard-step method operates by stepping along the channel by a constant distance interval, starting from a cross-section where the flow depth is known (the control section). The flow depth is computed at the adjacent cross-section (target section). The computed value at the target is then used as the basis for computing flow depth at the next cross-section, i.e. the previous target section becomes the new control section for each step. A Newton-Raphson scheme is used each step to compute the flow depth and friction slope. Technically, the average friction slope of the control and target section is used to compute the flow depth at the target section.

flow = 250; mannings = 0.045 ; Cm = 1.486; gravity = 32.2 width = 100; slope = 0.001; sideslope = 0 gvf = compute_profile(slope, mannings, flow, y0 = 2.7, Cm, gravity, width, sideslope, stepdist=50, totaldist=3000)

While a `plot`

method is defined for `rivr`

objects, the output is also
formatted for easy visualization with `ggplot2`

.

require(ggplot2) ggplot(gvf, aes(x = x, y = y + z)) + geom_line(color='blue') # or try the default plot method # plot(gvf)

Unsteady flow models solve the shallow water equations (conservation of mass
and conservation of momentum). Kinematic wave models (KWM) use a truncated form
of the momentum equation while dynamic wave models (DWM) solve the mass and
momentum equations simultaneously. A variety of numerical schemes can be used to
solve these equations. `rivr`

provides an interface to multiple explicit finite
differencing schemes (one KWM scheme and two DWM schemes) for computing unsteady
flows. The MacCormack scheme is recommended for most applications.

baseflow = 250; mannings = 0.045 ; Cm = 1.486; gravity = 32.2 width = 100; slope = 0.001; sideslope = 0 numnodes = 301; xresolution = 250; tresolution = 10; times = seq(0, 30000, by = tresolution) wave = ifelse(times >= 9000, baseflow, baseflow + (750/pi)*(1 - cos(pi*times/(60*75)))) downstream = rep(-1, length(wave)) mn = c(1, 101, 201) mt = c(501, 1501, 3001) uf = route_wave(slope, mannings, Cm, gravity, width, sideslope, baseflow, wave, downstream, tresolution, xresolution, numnodes, mn, mt, "Dynamic", "MacCormack", "QQ")

Methods are defined for printing and summarizing `rivr`

objects. Accessing the
unsteady flow outputs for in-depth analysis is greatly simplified by using
`dplyr`

.

require(dplyr) uf.nodes = filter(uf, monitor.type == "node") ggplot(uf.nodes, aes(x=time, y=flow, color=factor(distance))) + geom_line() uf.times = filter(uf, monitor.type == "timestep") ggplot(uf.times, aes(x=distance, y=flow, color=factor(time))) + geom_line() # or try the default plot method # plot(uf)

**Any scripts or data that you put into this service are public.**

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.