langevin_proposal | R Documentation |
The Langevin proposal is a gradient-based proposal corresponding to a Euler-Maruyama time discretisation of a Langevin diffusion.
langevin_proposal(scale = NULL, shape = NULL, sample_auxiliary = stats::rnorm)
scale |
Scale parameter of proposal distribution. A non-negative scalar value determining scale of steps proposed. |
shape |
Shape parameter of proposal distribution. Either a vector corresponding to a diagonal shape matrix with per-dimension scaling factors, or a matrix allowing arbitrary linear transformations. |
sample_auxiliary |
Function which generates a random vector from auxiliary variable distribution. |
Proposal object. A list with entries
sample
: a function to generate sample from proposal distribution given
current chain state,
log_density_ratio
: a function to compute log density ratio for proposal
for a given pair of current and proposed chain states,
update
: a function to update parameters of proposal,
parameters
: a function to return list of current parameter values.
default_target_accept_prob
: a function returning the default target
acceptance rate to use for any scale adaptation.
default_initial_scale
: a function which given a dimension gives a default
value to use for the initial proposal scale parameter.
Besag, J. (1994). "Comments on "Representations of knowledge in complex systems" by U. Grenander and MI Miller". Journal of the Royal Statistical Society, Series B. 56: 591–592.
Roberts, G. O., & Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2 (4), 341 - 363.
target_distribution <- list(
log_density = function(x) -sum(x^2) / 2,
gradient_log_density = function(x) -x
)
proposal <- langevin_proposal(scale = 1.)
state <- chain_state(c(0., 0.))
withr::with_seed(
876287L, proposed_state <- proposal$sample(state, target_distribution)
)
log_density_ratio <- proposal$log_density_ratio(
state, proposed_state, target_distribution
)
proposal$update(scale = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.