scale_adapter | R Documentation |
Create object to adapt proposal scale to coerce average acceptance rate.
scale_adapter(
algorithm = "dual_averaging",
initial_scale = NULL,
target_accept_prob = NULL,
...
)
algorithm |
String specifying algorithm to use. One of:
|
initial_scale |
Initial value to use for scale parameter. If not set explicitly a proposal and dimension dependent default will be used. |
target_accept_prob |
Target value for average accept probability for chain. If not set a proposal dependent default will be used. |
... |
Any additional algorithmic parameters to pass through to
|
List of functions with entries
initialize
, a function for initializing adapter state and proposal
parameters at beginning of chain,
update
a function for updating adapter state and proposal parameters on
each chain iteration,
finalize
a function for performing any final updates to adapter state and
proposal parameters on completion of chain sampling (may be NULL
if
unused).
state
a zero-argument function for accessing current values of adapter
state variables.
Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1), 221-259.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 400-407.
dual_averaging_scale_adapter()
, stochastic_approximation_scale_adapter()
proposal <- barker_proposal()
adapter <- scale_adapter(initial_scale = 1., target_accept_prob = 0.4)
adapter$initialize(proposal, chain_state(c(0, 0)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.