Nothing
#' Functions to use a model to predict the observations within a test set after
#' \code{rmw_calculate_model}.
#'
#' \code{rmw_predict_the_test_set} uses data withheld from the training of the
#' model and therefore can be used for investigating overfitting.
#'
#' @param model A ranger model object from \code{rmw_calculate_model}.
#'
#' @param df Input data used to calculate \code{model}.
#'
#' @return Tibble.
#'
#' @author Stuart K. Grange
#'
#' @examples
#'
#' # Load package
#' library(dplyr)
#'
#' # Prepare example data
#' data_london_prepared <- data_london %>%
#' filter(variable == "no2") %>%
#' rmw_prepare_data()
#'
#' # Use the test set for prediction
#' rmw_predict_the_test_set(
#' model_london,
#' df = data_london_prepared
#' )
#'
#' # Predict, then produce a hex plot of the predictions
#' rmw_predict_the_test_set(
#' model_london,
#' df = data_london_prepared
#' ) %>%
#' rmw_plot_test_prediction()
#'
#' @export
rmw_predict_the_test_set <- function(model, df) {
df %>%
filter(set == "testing") %>%
mutate(value_predict = rmw_predict(model, .))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.