Nothing
#' @name rnmamod-package
#' @aliases rnmamod rnmamod-package
#'
#' @title rnmamod: Bayesian Network Meta-analysis with Missing Participants
#'
#' @description
#' An R package for performing Bayesian network meta-analysis while handling
#' missing participant outcome data properly, assessing the robustness of the
#' primary analysis results, and exploring the transitivity assumption.
#'
#' @details
#' R-package \bold{rnmamod} is built upon the WinBUGS program code found in
#' the series of tutorial papers on evidence synthesis methods for decision
#' making (Dias et al., 2013a; Dias et al., 2013b; Dias et al., 2013c) and
#' Dias et al. (2010) that introduces the node-splitting approach.
#' All models comprise Bayesian hierarchical models for one-stage network
#' meta-analysis and they are implemented in JAGS through the R-package
#' \bold{R2jags}.
#'
#' \bold{rnmamod} comprises a suite of core models implemented in a
#' systematic review with multiple interventions:
#' \itemize{
#' \item fixed-effect and random-effects network meta-analysis
#' (\code{\link{run_model}}) based on Dias et al. (2013c);
#' \item fixed-effect and random-effects network meta-regression
#' (\code{\link{run_metareg}}) based on Cooper et al. (2009), and Dias et
#' al. (2013b);
#' \item fixed-effect and random-effects separate pairwise meta-analyses for
#' comparisons with at least two trials (\code{\link{run_series_meta}});
#' \item local evaluation of the consistency assumption using the
#' fixed-effect or random-effects node-splitting approach
#' (\code{\link{run_nodesplit}}) based on Dias et al. (2010), and
#' van Valkenhoef et al. (2016);
#' \item global evaluation of the consistency assumption using the
#' fixed-effect or random-effects unrelated mean effects model
#' (\code{\link{run_ume}}) based on Dias et al. (2013a) and Spineli (2021);
#' \item comprehensive sensitivity analysis for the impact of aggregate
#' binary and continuous missing participant outcome data
#' (\code{\link{run_sensitivity}}) based on Spineli et al. (2021a);
#' \item hierarchical baseline model for the selected reference intervention
#' (\code{\link{baseline_model}}) based in Dias et al. (2013d).
#' }
#'
#' \bold{rnmamod} also includes a rich suite of visualisation tools to aid in
#' the interpretation of the results and preparation of the manuscript for
#' submission:
#' \itemize{
#' \item network plot and description of the evidence base
#' (\code{\link{netplot}} and \code{\link{describe_network}},
#' respectively) following the PRISMA statement for systematic reviews with
#' network meta-analysis (Hutton et al., 2015);
#' \item illustration of the R-hat (Gelman and Rubin, 1992) and MCMC error
#' for all monitored nodes and creation of an HTML file with a panel of
#' diagnostic plots for each monitored parameter
#' (\code{\link{mcmc_diagnostics}});
#' \item heatmap on the proportion of missing participants across the network
#' (\code{\link{heatmap_missing_network}}) and across the intervention arms
#' of each trial in the dataset (\code{\link{heatmap_missing_dataset}});
#' \item league heatmap with the estimated and predicted summary effects of
#' all possible pairwise comparisons in the network and integrated SUCRA
#' (Salanti et al., 2011) or P-scores (Ruecker and Schwarzer, 2015)
#' (\code{\link{league_heatmap}} and
#' \code{\link{league_heatmap_pred}}, respectively) after performing network
#' meta-analysis or network meta-regression;
#' \item league table for relative and absolute effects for all pairwise
#' comparisons and interventions when conducting network meta-analysis anew
#' via the package (\code{\link{league_table_absolute}}) or using the results
#' of a published systematic review with network meta-analysis
#' (\code{\link{league_table_absolute_user}});
#' \item forest plot with the trial-specific and summary absolute risks when
#' employing the hierarchical baseline model for the selected reference
#' intervention (\code{\link{baseline_model}}) as described in
#' Dias et al. (2013d);
#' \item rankograms with integrated SUCRA values for each intervention in
#' the network (\code{\link{rankosucra_plot}}) after performing network
#' meta-analysis (Salanti et al., 2011);
#' \item forest plot with the estimated and predicted summary effects of all
#' comparisons with a selected intervention (\code{\link{forestplot}}) as
#' obtained from the network meta-analysis model, and a forest plot with the
#' corresponding SUCRA values (Salanti et al., 2011);
#' \item tabulation of the estimated regression coefficient(s), the estimated
#' and predicted summary effects, measures of model fit and estimated
#' between-trial standard deviation before and after adjusting for a
#' trial-specific covariate (\code{\link{metareg_plot}}), and visualisation
#' of the summary effects and SUCRA values from both models
#' (\code{\link{forestplot_metareg}}, and \code{\link{scatterplot_sucra}},
#' respectively--both found in \code{\link{metareg_plot}});
#' \item tabulation of the estimated direct and indirect effects of the split
#' nodes and corresponding inconsistency factors, measures of model fit and
#' estimated between-trial standard deviation after each split node, and
#' visualisation of these results (\code{\link{nodesplit_plot}});
#' \item tabulation of the estimated summary effects of all comparisons
#' observed in the network, measures of model fit and estimated between-trial
#' standard deviation under the unrelated mean effects model and network
#' meta-analysis, as well as visualisation of the summary effects from both
#' models (\code{\link{intervalplot_panel_ume}}) and the goodness of fit of
#' each model using a series of complementary plots
#' (\code{\link{scatterplots_dev}} (Dias et al., 2013a),
#' \code{\link{bland_altman_plot}} (Bland and Altman, 1999), and
#' \code{\link{leverage_plot}} (Dias et al., 2010)--all found in
#' \code{\link{ume_plot}});
#' \item tabulation of the estimated summary effects and corresponding
#' between-trial standard deviation for comparisons with at least two trials
#' under pairwise and network meta-analysis, as well as visualisation of
#' these results (\code{\link{series_meta_plot}});
#' \item calculation and visualisation of the robustness index for all
#' possible comparisons in the network (\code{\link{robustness_index}},
#' \code{\link{robustness_index_user}} and \code{\link{heatmap_robustness}})
#' (Spineli et al., 2021a);
#' \item enhanced balloon plot with the summary effects and between-trial
#' standard deviation for a selected pairwise comparison under several
#' scenarios about the missingness parameter (\code{\link{balloon_plot}})
#' (Spineli et al., 2021a);
#' \item barplot with the Kullback-Leibler divergence measure from each
#' informative scenario to the missing-at-random assumption about the
#' missingness parameter for a selected pairwise comparison
#' (\code{\link{kld_barplot}}) (Spineli et al., 2021a).
#' }
#'
#' \bold{rnmamod} also assists the researcher in assessing the transitivity
#' assumption quantitatively based on trial dissimilarities for various
#' trial-level aggregate participant and methodological characteristics
#' calculated using the Gower's dissimilarity coefficient
#' (\code{\link{gower_distance}} and \code{\link{comp_clustering}}) (Gower,
#' 1971). Results on the clustered comparisons based on hierarchical
#' agglomerative clustering are illustrated using a dendrogram with integrated
#' heatmap (\code{\link{dendro_heatmap}}). The distribution of the
#' characteristics is presented using violin plots with integrated box
#' plots and dots, and stacked bar plots across the observed treatment
#' comparisons (\code{\link{distr_characteristics}}). Missing data in the
#' characteristics across the trials and observed comparisons are visualised
#' using bar plots and tile plot (\code{\link{miss_characteristics}}).
#'
#' Missing participant outcome data are addressed in all models of the package
#' after extending the code to incorporate the pattern-mixture model
#' (Spineli et al., 2021b; Spineli, 2019).
#'
#' Type \code{citation("rnmamod")} on how to cite \bold{rnmamod}.
#'
#' To report possible bugs and errors, send an email to Loukia Spineli
#' (\email{Spineli.Loukia@mh-hannove.de}).
#'
#' The development version of \bold{rnmamod} is available on
#' \href{https://github.com/LoukiaSpin/rnmamod}{GitHub} under the
#' GPL-3.0 License.
#'
#' @author {Loukia M. Spineli}
#'
#' @references
#' Bland JM, Altman DG. Measuring agreement in method comparison studies.
#' \emph{Stat Methods Med Res} 1999;\bold{8}(2):135--60.
#' doi: 10.1177/096228029900800204
#'
#' Cooper NJ, Sutton AJ, Morris D, Ades AE, Welton NJ. Addressing between-study
#' heterogeneity and inconsistency in mixed treatment comparisons: Application
#' to stroke prevention treatments in individuals with non-rheumatic atrial
#' fibrillation. \emph{Stat Med} 2009;\bold{28}(14):1861--81.
#' doi: 10.1002/sim.3594
#'
#' Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE. Evidence synthesis
#' for decision making 4: inconsistency in networks of evidence based on
#' randomized controlled trials.
#' \emph{Med Decis Making} 2013a;\bold{33}(5):641--56.
#' doi: 10.1177/0272989X12455847
#'
#' Dias S, Sutton AJ, Welton NJ, Ades AE. Evidence synthesis for decision making
#' 3: heterogeneity--subgroups, meta-regression, bias, and bias-adjustment.
#' \emph{Med Decis Making} 2013b;\bold{33}(5):618--40.
#' doi: 10.1177/0272989X13485157
#'
#' Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision
#' making 2: a generalized linear modeling framework for pairwise and network
#' meta-analysis of randomized controlled trials. \emph{Med Decis Making}
#' 2013c;\bold{33}(5):607--17. doi: 10.1177/0272989X12458724
#'
#' Dias S, Welton NJ, Sutton AJ, Ades AE. Evidence synthesis for decision
#' making 5: the baseline natural history model. \emph{Med Decis Making}
#' 2013d;\bold{33}(5):657--70. doi: 10.1177/0272989X13485155
#'
#' Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed
#' treatment comparison meta-analysis.
#' \emph{Stat Med} 2010;\bold{29}(7-8):932--44.
#' doi: 10.1002/sim.3767
#'
#' Gelman, A, Rubin, DB. Inference from iterative simulation using multiple
#' sequences. \emph{Stat Sci} 1992;\bold{7}(4):457--72.
#' doi: 10.1214/ss/1177011136
#'
#' Gower JC. A General Coefficient of Similarity and Some of Its Properties.
#' \emph{Biometrics} 1971;\bold{27}(4):857--71.
#' http://dx.doi.org/10.2307/2528823
#'
#' Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al.
#' The PRISMA extension statement for reporting of systematic reviews
#' incorporating network meta-analyses of health care interventions: checklist
#' and explanations. \emph{Ann Intern Med} 2015;\bold{162}(11):777--84.
#' doi: 10.7326/M14-2385
#'
#' Ruecker G, Schwarzer G. Ranking treatments in frequentist network
#' meta-analysis works without resampling methods.
#' \emph{BMC Med Res Methodol} 2015;\bold{15}:58.
#' doi: 10.1186/s12874-015-0060-8
#'
#' Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries
#' for presenting results from multiple-treatment meta-analysis: an overview and
#' tutorial. \emph{J Clin Epidemiol} 2011;\bold{64}(2):163--71.
#' doi: 10.1016/j.jclinepi.2010.03.016
#'
#' Spineli LM. A revised framework to evaluate the consistency assumption
#' globally in a network of interventions. \emph{Med Decis Making} 2021.
#' doi: 10.1177/0272989X211068005
#'
#' Spineli LM, Kalyvas C, Papadimitropoulou K. Quantifying the robustness of
#' primary analysis results: A case study on missing outcome data in pairwise
#' and network meta-analysis.
#' \emph{Res Synth Methods} 2021a;\bold{12}(4):475--90. doi: 10.1002/jrsm.1478
#'
#' Spineli LM, Kalyvas C, Papadimitropoulou K. Continuous(ly) missing outcome
#' data in network meta-analysis: a one-stage pattern-mixture model approach.
#' \emph{Stat Methods Med Res} 2021b;\bold{30}(4):958--75.
#' doi: 10.1177/0962280220983544
#'
#' Spineli LM. An empirical comparison of Bayesian modelling strategies for
#' missing binary outcome data in network meta-analysis.
#' \emph{BMC Med Res Methodol} 2019;\bold{19}(1):86.
#' doi: 10.1186/s12874-019-0731-y
#'
#' van Valkenhoef G, Dias S, Ades AE, Welton NJ. Automated generation of
#' node-splitting models for assessment of inconsistency in network
#' meta-analysis. \emph{Res Synth Methods} 2016;\bold{7}(1):80--93.
#' doi: 10.1002/jrsm.1167
#'
#' @keywords package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.