cubinf.control | R Documentation |
Allows the user to set parameters affecting the estimation of the discrete GLMs implemented in cubinf. Most control parameters are parameters of the ROBETH subroutine GYMAIN (Marazzi, 1993).
cubinf.control(tlo = 0.001, tua = 1e-06, mxx = 30, mxt = 10, mxf = 10, ntm = 0, gma = 1,
iug = 1, ipo = 1, ilg = 2, icn = 1, icv = 1, ufact = 0, cpar = 1.5,
null.dev=TRUE, ...)
tlo |
Relative precision for the convergence criterion of the main algorithm (GYMAIN) called by cubinf. The relative precision for the convergence criterion in the lower level steps (theta-step, A-step and c-step) is '10*tlo'. |
tua |
Tolerance used for the determination of the pseudo-rank. |
mxx |
Maximum number of cycles for the main algorithm. |
mxt |
Maximum number of iterations for the theta-step. |
mxf |
Maximum number of iterations for the A-step. |
ntm |
Parameter to control iteration monitoring. When the number of iterations in the theta-step reaches a multiple of 'ntm', the current parameter values as well as the corresponding value of the objective function are printed. |
gma |
Relaxation factor for the theta-step. |
iug |
Parameter for the choice of the u-function in the A-step. See Marazzi, 1993, for details. |
ipo |
Parameter for the choice of the steplength algorithm in the theta-step. If 'ipo=1', a quadratic comparison function is minimized. If 'ipo=2', the Goldstein-Armijo step length algorithm is used. |
ilg |
Parameter for the choice of the algorithm in the c-step. If 'ilg=1', the H-algorithm is used. If 'ilg=2', the W-algorithm is used. |
icn |
Parameter for the choice of the convergence criterion for the theta-step and the main algorithm. If 'icn=1', convergence is assumed when the change in each coefficient is less than the tolerance ('10*tlo') times an estimate of the coefficient variance. See Marazzi (1993, p. 281), for the other options ('icn=2' and 'icn=3'). |
icv |
Parameter for the choice of the convergence criterion for the A-step. If 'icv=1', convergence is assumed when the norm of the difference between two consecutive values of A is less than the tolerance (10*tol). See Marazzi (1993, p.288 and p. 301), for another option ('icv=2'). |
ufact |
The tuning constant b is set equal to ufact*sqrt(p), where p is the dimension of the observation vectors. The default value of b is 1.1*sqrt(p); this value is used when 'ufact=0' on input. |
cpar |
Parameter used in determining an initial value of theta (standard Mallows estimate, see Marazzi, 1993, p281). |
null.dev |
If 'null.dev=TRUE', the null deviance is computed. The null deviance is the deviance of the model with no predictors. |
... |
Further named control arguments as singular.ok or qr.out used in the case where the x matrix is singular |
List of control parameters.
Marazzi, A. (1993). Algorithms, Routines, and S-functions for robust Statistics. Chapman and Hall, New York.
cubinf
#To compute the classical estimates using cubinf, set:
control <- cubinf.control(ufact=300)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.