| cubinf.summaries | R Documentation |
Auxiliary functions for residuals(), summary(), covar(), deviance(), family(), Rank(), rscale(), weights().
## S3 method for class 'cubinf'
residuals(object, type = c("deviance", "pearson", "response"), ...)
## S3 method for class 'cubinf'
summary(object, ...)
## S3 method for class 'cubinf'
covar(object)
## S3 method for class 'cubinf'
deviance(object, ...)
## S3 method for class 'cubinf'
family(object, ...)
## S3 method for class 'cubinf'
Rank(object)
## S3 method for class 'cubinf'
rscale(object)
## S3 method for class 'cubinf'
weights(object)
object |
An object inheriting from class "cubinf". |
type |
A character string for the residual type. |
... |
Optional arguments. For summary, it can be correlation=TRUE. |
The generic functions coef, residuals, fitted, formula,
deviance, rscale, r.squared, covar, correl, weights
and Rank can be used to extract elements from an object of class "cubinf" returned by glm.
The class "lm" functions effects, alias, add1, drop1, codekappa,
proj, step, influence, anova and sensitivity are not
implemented to objects of class "cubinf".
summary.cubinf returns a list with the following components:
call |
The model formula used in glm. |
terms |
Terms object used in fitting the model. |
coefficients |
A matrix with three columns, containing the coefficients, their standard errors and the corresponding t-statistics. |
dispersion |
Dispersion coefficient |
df |
Degrees of freedom for model and residuals. |
deviance.resid |
Deviance residuals |
family |
The family function used: binomial or poisson |
cov.unscaled |
Unscaled covariance matrix of coefficient estimates. |
correlation |
Correlation matrix of coefficient estimates. |
deviance |
Deviance. |
null.deviance |
Null deviance. |
iter |
Number of iterations of the main algorithm. |
nas |
A logical vector whose i-th component is TRUE if the i-th coefficient is NA. |
The model fitting function glm, cubinf
library(robcbi)
data(Finney)
Vol <- Finney$Vol; Rate <- Finney$Rate; Resp <- Finney$Resp
lVol <-log(Vol); lRate <- log(Rate)
z.glm <- glm(Resp~lVol+lRate,family=binomial)
summary(z.glm)
z.cub <- glm(Resp~lVol+lRate,family=binomial,method="cubinf", ufact=3.2)
summary(z.cub)
weights(z.cub)
covar(z.cub)
deviance(z.cub)
Rank(z.cub)
residuals(z.cub)
rscale(z.cub)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.