Nothing
# Initialize vectors for gaussian probability functions
#
# Takes in the desired initialization parameters,
# initializes the vectors needed for the gaussian probability
# function \code{gaussian_update}
#
# @param pars A list of parameters to be used for
# initialization
#
#
# @return A list object containing the parameters to be used in the
# iteratively updating algorithm of parameters describing the
# underlying gaussian distribution of the data.
#
.regressionInit <- function(pars, params) {
# {k x d x 1L} array of coefficients
if (is.null(x = pars$B)) {
pars$B <- matrix(data = 0.0, nrow = params$k, ncol = params$d)
} else {
if (!is.matrix(x = pars$B)) {
stop("B must be a {k x d} matrix", call. = FALSE)
}
if ({nrow(x = pars$B) != params$k} ||
{ncol(x = pars$B) != params$d}) {
stop("B is of inappropriate dimension", call. = FALSE)
}
}
pars$B <- array(data = pars$B, dim = c(params$k, params$d, 1L))
# {d x d x 1L} covariance matrix prior
if (is.null(x = pars$V)) {
pars$V <- matrix(data = 0.1, nrow = params$d, ncol = params$d)
diag(x = pars$V) <- 1.0
} else {
if (!is.matrix(x = pars$V)) {
stop("V must be a {d x d} matrix", call. = FALSE)
}
if ({nrow(x = pars$V) != params$d} ||
{ncol(x = pars$V) != params$d}) {
stop("V is of inappropriate dimension", call. = FALSE)
}
}
pars$V <- array(data = pars$V, dim = c(params$d, params$d, 1L))
# {k x k x 1L} covariance prior
if (is.null(x = pars$Lambda)) {
pars$Lambda <- matrix(data = 0.0, nrow = params$k, ncol = params$k)
diag(x = pars$Lambda) <- 0.01
} else {
if (!is.matrix(x = pars$Lambda)) {
stop("Lambda must be a {k x k} matrix", call. = FALSE)
}
if ({nrow(x = pars$Lambda) != params$k} ||
{ncol(x = pars$Lambda) != params$k}) {
stop("Lambda is of inappropriate dimension", call. = FALSE)
}
}
pars$Lambda <- array(data = pars$Lambda, dim = c(params$k, params$k, 1L))
# scalar df prior > d-1
if (is.null(x = pars$nu)) {
pars$nu <- params$d - 1.0 + 0.1
} else {
if (pars$nu < 1e-8) {
stop("nu cannot be <= 0", call. = FALSE)
}
}
pars$XTX <- array(data = 0.0, dim = c(params$k, params$k, 1L))
pars$XTY <- array(data = 0.0, dim = c(params$k, params$d, 1L))
pars$YTY <- array(data = 0.0, dim = c(params$d, params$d, 1L))
return( pars )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.