TheilSen | R Documentation |
Computes the Theil-Sen median slope estimator by Theil (1950) and Sen (1968).
The implemented algorithm was proposed by Dillencourt et. al (1992) and runs in an expected O(n log n)
time while requiring O(n)
storage.
TheilSen(x, y, alpha = NULL, verbose = TRUE)
x |
A vector of predictor values. |
y |
A vector of response values. |
alpha |
Determines the order statistic of the target slope, which is equal to |
verbose |
Whether or not to print out the progress of the algorithm. Defaults to |
Given two input vectors x
and y
of length n
, the Theil-Sen estimator is computed as med_{ij} (y_i - y_j)/(x_i-x_j)
. By default, the median in this experssion is the upper median, defined as \lfloor (n +2) / 2 \rfloor
.
By changing alpha
, other order statistics of the slopes can be computed.
A list with elements:
intecept |
The estimate of the intercept. |
slope |
The Theil-Sen estimate of the slope. |
Jakob Raymaekers
Theil, H. (1950), A rank-invariant method of linear and polynomial regression analysis (Parts 1-3), Ned. Akad. Wetensch. Proc. Ser. A, 53, 386-392, 521-525, 1397-1412.
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389.
Dillencourt, M. B., Mount, D. M., & Netanyahu, N. S. (1992). A randomized algorithm for slope selection. International Journal of Computational Geometry & Applications, 2(01), 1-27.
Raymaekers (2023). "The R Journal: robslopes: Efficient Computation of the (Repeated) Median Slope", The R Journal. (link to open access pdf)
# We compare the implemented algorithm against a naive brute-force approach.
bruteForceTS <- function(x, y) {
n <- length(x)
medind1 <- floor(((n * (n - 1)) / 2 + 2) / 2)
medind2 <- floor((n + 2) / 2)
temp <- t(sapply(1:n, function(z) apply(cbind(x, y), 1 ,
function(k) (k[2] - y[z]) /
(k[1] - x[z]))))
TSslope <- sort(as.vector(temp[lower.tri(temp)]))[medind1]
TSintercept <- sort(y - x * TSslope)[medind2]
return(list(intercept = TSintercept, slope = TSslope))
}
n = 100
set.seed(2)
x = rnorm(n)
y = x + rnorm(n)
t0 <- proc.time()
TS.fast <- TheilSen(x, y, NULL, FALSE)
t1 <- proc.time()
t1 - t0
t0 <- proc.time()
TS.naive <- bruteForceTS(x, y)
t1 <- proc.time()
t1 - t0
TS.fast$slope - TS.naive$slope
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.