tests/testthat/_snaps/monte_carlo.md

generate_param() works correctly

$structural
$structural$mean
     [,1]
[1,] 0.00
[2,] 0.00
[3,] 0.00
[4,] 0.74
[5,] 0.13
[6,] 0.66
[7,] 0.71
[8,] 0.46

$structural$cov
       [,1]   [,2]   [,3]    [,4]    [,5]    [,6]    [,7]    [,8]
[1,] 1.0000 0.2636 0.1044  0.0000  0.0000  0.0000  0.0000  0.0000
[2,] 0.2636 0.8765 0.4356  0.0000  0.0000  0.0000  0.0000  0.0000
[3,] 0.1044 0.4356 1.1933  0.0000  0.0000  0.0000  0.0000  0.0000
[4,] 0.0000 0.0000 0.0000  2.0718 -1.3645 -0.6586 -0.0775  1.4605
[5,] 0.0000 0.0000 0.0000 -1.3645  3.0173  0.3181 -0.2227  0.4211
[6,] 0.0000 0.0000 0.0000 -0.6586  0.3181  1.1973 -1.1569 -0.2533
[7,] 0.0000 0.0000 0.0000 -0.0775 -0.2227 -1.1569  2.1569 -0.3381
[8,] 0.0000 0.0000 0.0000  1.4605  0.4211 -0.2533 -0.3381  2.1077


$params
$params$beta
     [,1]
[1,] 0.01
[2,] 0.21
[3,] 0.91
[4,] 0.61
[5,] 0.38

$params$sigma
[1] 1

$params$Pi
     [,1] [,2] [,3]  [,4]  [,5]
[1,]    1    0    0 -0.13 -0.93
[2,]    0    1    0  0.95 -0.14
[3,]    0    0    1  0.92  0.78
[4,]    0    0    0  0.14  0.19
[5,]    0    0    0  0.19  1.00
[6,]    0    0    0 -0.31 -0.20

$params$Omega2
     [,1]
[1,] 0.28
[2,] 0.04

$params$Omega
     [,1]
[1,] 0.00
[2,] 0.00
[3,] 0.00
[4,] 0.28
[5,] 0.04

$params$Sigma2_half
     [,1] [,2]
[1,] 0.91 0.22
[2,] 0.22 1.07

$params$Sigma_half
     [,1] [,2] [,3] [,4] [,5]
[1,]    0    0    0 0.00 0.00
[2,]    0    0    0 0.00 0.00
[3,]    0    0    0 0.00 0.00
[4,]    0    0    0 0.91 0.22
[5,]    0    0    0 0.22 1.07

$params$mean_z
     [,1]
[1,] 0.74
[2,] 0.13
[3,] 0.66
[4,] 0.71
[5,] 0.46

$params$cov_z
        [,1]    [,2]    [,3]    [,4]    [,5]
[1,]  2.0718 -1.3645 -0.6586 -0.0775  1.4605
[2,] -1.3645  3.0173  0.3181 -0.2227  0.4211
[3,] -0.6586  0.3181  1.1973 -1.1569 -0.2533
[4,] -0.0775 -0.2227 -1.1569  2.1569 -0.3381
[5,]  1.4605  0.4211 -0.2533 -0.3381  2.1077

$params$Ezz
        [,1]    [,2]    [,3]    [,4]    [,5]
[1,]  2.6194 -1.2683 -0.1702  0.4479  1.8009
[2,] -1.2683  3.0342  0.4039 -0.1304  0.4809
[3,] -0.1702  0.4039  1.6329 -0.6883  0.0503
[4,]  0.4479 -0.1304 -0.6883  2.6610 -0.0115
[5,]  1.8009  0.4809  0.0503 -0.0115  2.3193

$params$Mzz
     [,1]    [,2]    [,3]    [,4]    [,5]    [,6]
[1,] 1.00  0.7400  0.1300  0.6600  0.7100  0.4600
[2,] 0.74  2.6194 -1.2683 -0.1702  0.4479  1.8009
[3,] 0.13 -1.2683  3.0342  0.4039 -0.1304  0.4809
[4,] 0.66 -0.1702  0.4039  1.6329 -0.6883  0.0503
[5,] 0.71  0.4479 -0.1304 -0.6883  2.6610 -0.0115
[6,] 0.46  1.8009  0.4809  0.0503 -0.0115  2.3193

$params$Mxx_tilde_inv
          [,1]       [,2]       [,3]       [,4]       [,5]
[1,]  27.77782   56.56671   58.01835  -94.82079  13.111081
[2,]  56.56671  125.03392  126.69627 -205.95344  28.997432
[3,]  58.01835  126.69627  129.60090 -209.90574  28.929967
[4,] -94.82079 -205.95344 -209.90574  341.61103 -47.562665
[5,]  13.11108   28.99743   28.92997  -47.56266   7.201359


$setting
$setting$call
p <- generate_param(3, 2, 3)

$setting$intercept
[1] TRUE

$setting$formula
y ~ x1 + x2 + x3 + x4 + x5 | x1 + x2 + x3 + z4 + z5 + z6
NULL

$setting$dx1
[1] 3

$setting$dx2
[1] 2

$setting$dz2
[1] 3


$names
$names$x1
[1] "x1" "x2" "x3"

$names$x2
[1] "x4" "x5"

$names$x
[1] "x1" "x2" "x3" "x4" "x5"

$names$z2
[1] "z4" "z5" "z6"

$names$z
[1] "x1" "x2" "x3" "z4" "z5" "z6"

$names$r
[1] "r1" "r2" "r3" "r4" "r5"

$names$u
[1] "u"
$structural
$structural$mean
      [,1]
 [1,] 0.00
 [2,] 0.00
 [3,] 0.00
 [4,] 0.74
 [5,] 0.13
 [6,] 0.66
 [7,] 0.71
 [8,] 0.46
 [9,] 0.72

$structural$cov
        [,1]   [,2]   [,3]    [,4]    [,5]    [,6]    [,7]    [,8]    [,9]
 [1,] 1.0000 0.2636 0.1044  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 [2,] 0.2636 0.8765 0.4356  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 [3,] 0.1044 0.4356 1.1933  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 [4,] 0.0000 0.0000 0.0000  3.4923 -0.4745 -0.7020 -0.7554 -0.0975 -1.0981
 [5,] 0.0000 0.0000 0.0000 -0.4745  1.8771 -0.6139  0.4759 -0.0815  1.2661
 [6,] 0.0000 0.0000 0.0000 -0.7020 -0.6139  1.4415 -0.8572  0.6683  0.3435
 [7,] 0.0000 0.0000 0.0000 -0.7554  0.4759 -0.8572  2.9731  0.3207 -0.2847
 [8,] 0.0000 0.0000 0.0000 -0.0975 -0.0815  0.6683  0.3207  3.5094 -0.3237
 [9,] 0.0000 0.0000 0.0000 -1.0981  1.2661  0.3435 -0.2847 -0.3237  2.3827


$params
$params$beta
     [,1]
[1,] 0.97
[2,] 0.62
[3,] 0.33
[4,] 0.35
[5,] 0.40

$params$sigma
[1] 1

$params$Pi
     [,1] [,2] [,3]  [,4]  [,5]
[1,]    1    0    0  0.57 -0.92
[2,]    0    1    0  0.50  0.35
[3,]    0    0    1 -0.66 -0.48
[4,]    0    0    0  0.92  0.50
[5,]    0    0    0  0.50  0.39
[6,]    0    0    0  0.13  0.70

$params$Omega2
     [,1]
[1,] 0.28
[2,] 0.04

$params$Omega
     [,1]
[1,] 0.00
[2,] 0.00
[3,] 0.00
[4,] 0.28
[5,] 0.04

$params$Sigma2_half
     [,1] [,2]
[1,] 0.91 0.22
[2,] 0.22 1.07

$params$Sigma_half
     [,1] [,2] [,3] [,4] [,5]
[1,]    0    0    0 0.00 0.00
[2,]    0    0    0 0.00 0.00
[3,]    0    0    0 0.00 0.00
[4,]    0    0    0 0.91 0.22
[5,]    0    0    0 0.22 1.07

$params$mean_z
     [,1]
[1,] 0.74
[2,] 0.13
[3,] 0.66
[4,] 0.71
[5,] 0.46
[6,] 0.72

$params$cov_z
        [,1]    [,2]    [,3]    [,4]    [,5]    [,6]
[1,]  3.4923 -0.4745 -0.7020 -0.7554 -0.0975 -1.0981
[2,] -0.4745  1.8771 -0.6139  0.4759 -0.0815  1.2661
[3,] -0.7020 -0.6139  1.4415 -0.8572  0.6683  0.3435
[4,] -0.7554  0.4759 -0.8572  2.9731  0.3207 -0.2847
[5,] -0.0975 -0.0815  0.6683  0.3207  3.5094 -0.3237
[6,] -1.0981  1.2661  0.3435 -0.2847 -0.3237  2.3827

$params$Ezz
        [,1]    [,2]    [,3]    [,4]    [,5]    [,6]
[1,]  4.0399 -0.3783 -0.2136 -0.2300  0.2429 -0.5653
[2,] -0.3783  1.8940 -0.5281  0.5682 -0.0217  1.3597
[3,] -0.2136 -0.5281  1.8771 -0.3886  0.9719  0.8187
[4,] -0.2300  0.5682 -0.3886  3.4772  0.6473  0.2265
[5,]  0.2429 -0.0217  0.9719  0.6473  3.7210  0.0075
[6,] -0.5653  1.3597  0.8187  0.2265  0.0075  2.9011

$params$Mzz
        [,1]    [,2]    [,3]    [,4]    [,5]    [,6]
[1,]  4.0399 -0.3783 -0.2136 -0.2300  0.2429 -0.5653
[2,] -0.3783  1.8940 -0.5281  0.5682 -0.0217  1.3597
[3,] -0.2136 -0.5281  1.8771 -0.3886  0.9719  0.8187
[4,] -0.2300  0.5682 -0.3886  3.4772  0.6473  0.2265
[5,]  0.2429 -0.0217  0.9719  0.6473  3.7210  0.0075
[6,] -0.5653  1.3597  0.8187  0.2265  0.0075  2.9011

$params$Mxx_tilde_inv
          [,1]       [,2]       [,3]       [,4]      [,5]
[1,]  4.457763 -1.9147127 -1.3108422 -2.0404645  3.302479
[2,] -1.914713  1.8755930  0.7476771  0.7512822 -1.689730
[3,] -1.310842  0.7476771  1.0376832  0.6980113 -1.042788
[4,] -2.040465  0.7512822  0.6980113  1.1150904 -1.524301
[5,]  3.302479 -1.6897302 -1.0427885 -1.5243013  2.646552


$setting
$setting$call
p <- generate_param(3, 2, 3, intercept = FALSE)

$setting$intercept
[1] FALSE

$setting$formula
y ~ x1 + x2 + x3 + x4 + x5 | x1 + x2 + x3 + z4 + z5 + z6
NULL

$setting$dx1
[1] 3

$setting$dx2
[1] 2

$setting$dz2
[1] 3


$names
$names$x1
[1] "x1" "x2" "x3"

$names$x2
[1] "x4" "x5"

$names$x
[1] "x1" "x2" "x3" "x4" "x5"

$names$z2
[1] "z4" "z5" "z6"

$names$z
[1] "x1" "x2" "x3" "z4" "z5" "z6"

$names$r
[1] "r1" "r2" "r3" "r4" "r5"

$names$u
[1] "u"

generate_data() works correctly

$data
            y x1          x2          x3           x4          x5           u
1  -4.3814575  1  2.79200008 -1.68765944 -0.526468959 -3.11393385 -1.93756650
2   2.0621646  1  0.37752824  1.59231751  2.660881783  0.75772310 -1.38719797
3   1.3716163  1  1.74991989  0.84521409  0.625886342 -0.61523607  0.07698732
4  -0.7751130  1  1.33428895  0.01704238  0.388005503  0.68004249 -1.57592170
5   0.6584386  1  1.51733747 -0.63980232  1.588996280 -1.25433177  0.41937613
6   2.5424517  1 -0.07879376  0.29486621  2.186068450  3.14610043 -0.24834974
7  -0.7030792  1  2.32970741 -2.22669475  0.969197495  0.54087056  0.02723322
8   2.2759349  1  0.17230683  0.46517553  2.329883347  4.16097962 -1.19596036
9  -3.6955411  1  2.35786773 -3.40430129 -0.126033819  0.45684250 -1.19949862
10  1.6110858  1  0.87401401  1.03115136  0.387177886  0.24160512  0.15120670
11 -4.1004764  1  2.51528070 -2.37056372 -0.878377240 -4.74074826 -0.14417787
12 -4.8279712  1  3.65856766 -3.20495274 -0.025675334 -3.93083337 -1.18038480
13  5.8137778  1 -0.72301279  3.02658744  2.588952233  2.89125369  0.52347868
14 -2.7031464  1  0.07389121 -0.68982725 -1.234433211 -3.45539008 -0.03486831
15  0.6086462  1 -0.08082488 -1.03650453 -0.137900929 -0.08988544  1.67711461
16  0.2097123  1  1.74971900 -0.02333581  0.262346571  0.83421067 -0.62352457
17  2.1412310  1 -0.05239055  0.53650174  1.703611868  1.98115764 -0.13802667
18  7.6953314  1 -2.12061007  5.02837056  2.339131821  2.49184483  1.18107082
19  1.5805289  1 -2.96220184  2.11963789 -0.210860088  2.25655015 -0.46514364
20 -2.8657518  1  2.75691319 -2.11453980 -0.520453596 -3.50128664  0.11749329
21  4.3249571  1  0.76022625  2.27240844  2.613172427  1.60511439 -0.11656074
22  2.2777726  1 -2.07645729  2.11468933  0.081329510  3.48458290 -0.59429112
23  2.7199610  1  1.22051545  1.44505796  3.098353085 -0.48499568 -0.56704702
24 -0.2870096  1  2.50944882 -1.34225958  0.002810355 -0.62041272  0.63150489
25 -2.1958206  1  3.39169423 -3.19557432  0.472866779 -2.53278041  0.66390409
26  4.0522315  1  0.44499334  1.54649418  2.098584743  0.46630401  1.08414095
27  1.6231637  1  0.77415842  0.83928651  2.347928394 -0.61404058 -0.51206114
28 -0.5813740  1 -1.49711893  2.49286068 -1.235086095 -0.74401636 -1.50935350
29  1.2594808  1 -0.05028370 -1.76036404  0.323469067  3.43070550  1.36098744
30  2.5025444  1  0.09877949  1.91096065  1.575087691  1.91713665 -0.95648895
   x1          x2          x3          z4          z5          z6 r1 r2 r3
1   1  2.79200008 -1.68765944  0.39685269  0.32924413  1.69526291  0  0  0
2   1  0.37752824  1.59231751  0.83062951 -0.11838824  0.91335925  0  0  0
3   1  1.74991989  0.84521409  0.54208177  0.51815124  2.29374880  0  0  0
4   1  1.33428895  0.01704238 -0.84570974  3.00329350  0.96146249  0  0  0
5   1  1.51733747 -0.63980232  1.03903520 -0.49421663  0.86469942  0  0  0
6   1 -0.07879376  0.29486621 -1.44504138  3.28686838 -1.20990445  0  0  0
7   1  2.32970741 -2.22669475 -0.42949125  2.44781374  0.83706218  0  0  0
8   1  0.17230683  0.46517553 -0.14777493  2.73077381  0.09000197  0  0  0
9   1  2.35786773 -3.40430129 -2.39297556  4.31818488 -0.76647916  0  0  0
10  1  0.87401401  1.03115136 -0.50551960  0.93517383  0.49171853  0  0  0
11  1  2.51528070 -2.37056372  0.86792371 -0.13224850  1.02534043  0  0  0
12  1  3.65856766 -3.20495274 -0.83800590  1.51495634  1.37241757  0  0  0
13  1 -0.72301279  3.02658744  1.35626776  0.29962133  0.84282138  0  0  0
14  1  0.07389121 -0.68982725  0.73354851 -0.02235288 -1.36516439  0  0  0
15  1 -0.08082488 -1.03650453  0.24519669  1.15463472 -1.71904774  0  0  0
16  1  1.74971900 -0.02333581  0.47966090  1.38767954  1.91550764  0  0  0
17  1 -0.05239055  0.53650174  0.11942244  2.31985091 -0.16948468  0  0  0
18  1 -2.12061007  5.02837056  2.57869064 -0.79026783  0.82499578  0  0  0
19  1 -2.96220184  2.11963789  3.32906525  0.05796597 -1.68915909  0  0  0
20  1  2.75691319 -2.11453980  1.02517328 -0.64573396  1.52155894  0  0  0
21  1  0.76022625  2.27240844 -1.04181951  1.28147103  1.01325893  0  0  0
22  1 -2.07645729  2.11468933  1.32795224  1.32229598 -1.37708335  0  0  0
23  1  1.22051545  1.44505796  1.75926693 -0.42425775  2.48384335  0  0  0
24  1  2.50944882 -1.34225958  1.17301350  0.91343288  2.36437712  0  0  0
25  1  3.39169423 -3.19557432 -0.06164772 -0.46907700  0.83861174  0  0  0
26  1  0.44499334  1.54649418  0.05361181  0.61376268  0.58325237  0  0  0
27  1  0.77415842  0.83928651  0.90379787 -0.45357691  0.83319461  0  0  0
28  1 -1.49711893  2.49286068  1.37856659 -0.37341714 -0.88630618  0  0  0
29  1 -0.05028370 -1.76036404 -1.65057767  4.50305169 -2.38719734  0  0  0
30  1  0.09877949  1.91096065  0.43057923  1.04630635  0.77509271  0  0  0
            r4          r5
1  -1.08880661 -0.54227304
2   1.15664485  0.64180988
3  -1.14741257 -0.26191129
4  -0.91942101 -0.86676626
5   1.08263687  0.85688111
6   1.32237602  0.58078225
7   0.78906806  1.33505353
8   1.39797245  2.06756948
9   0.17290193  0.35548363
10 -1.21627222 -0.25111238
11 -0.73550186 -1.43715819
12 -0.16782952 -1.07002246
13  0.63582302  0.97054576
14 -1.06163950 -2.36703427
15  0.23585395  0.09224098
16 -0.98542180  0.93165967
17  0.87977023  0.10891350
18 -0.09750664 -0.33185385
19 -0.21755719  0.09020416
20 -0.61329604  0.21928508
21  0.14682723 -0.01180605
22 -0.62559564  0.62439763
23  1.34371312  0.07549698
24 -0.62110444  1.04444256
25  0.67841059  2.01311716
26  0.43975409 -0.25496084
27  1.18827255  0.21819236
28 -2.37305992 -2.03381609
29  0.75624338  1.05986833
30 -0.16563718  0.39731861

$beta
     [,1]
[1,] 0.01
[2,] 0.21
[3,] 0.91
[4,] 0.61
[5,] 0.38

$Pi
     [,1] [,2] [,3]  [,4]  [,5]
[1,]    1    0    0 -0.13 -0.93
[2,]    0    1    0  0.95 -0.14
[3,]    0    0    1  0.92  0.78
[4,]    0    0    0  0.14  0.19
[5,]    0    0    0  0.19  1.00
[6,]    0    0    0 -0.31 -0.20

mc_grid() works correctly

     M    n iterations sign_level initial_est split mean_gauge        avar
1  100  100          0       0.01 robustified   0.5    0.00820 0.007125496
2  100 1000          0       0.01 robustified   0.5    0.00969 0.007125496
3  100  100          0       0.05 robustified   0.5    0.04870 0.021256489
4  100 1000          0       0.05 robustified   0.5    0.05054 0.021256489
5  100  100          0       0.01   saturated   0.3    0.03350 0.009239404
6  100 1000          0       0.01   saturated   0.3    0.01182 0.009239404
7  100  100          0       0.05   saturated   0.3    0.10020 0.041251545
8  100 1000          0       0.05   saturated   0.3    0.05525 0.041251545
9  100  100          0       0.01   saturated   0.4    0.02570 0.007587914
10 100 1000          0       0.01   saturated   0.4    0.01107 0.007587914
11 100  100          0       0.05   saturated   0.4    0.08660 0.025630407
12 100 1000          0       0.05   saturated   0.4    0.05379 0.025630407
13 100  100          0       0.01   saturated   0.5    0.02290 0.007125496
14 100 1000          0       0.01   saturated   0.5    0.01070 0.007125496
15 100  100          0       0.05   saturated   0.5    0.08060 0.021256489
16 100 1000          0       0.05   saturated   0.5    0.05283 0.021256489
   mean_avar_est    var_gauge var_ratio var_ratio2 mean_prop_t mean_prop_p
1    0.007125496 5.531313e-05 0.7762706  0.7762706   0.5923282   0.6398972
2    0.007125496 6.438283e-06 0.9035557  0.9035557   0.7679736   0.5073626
3    0.021256489 2.195051e-04 1.0326496  1.0326496   0.8024909   0.4971735
4    0.021256489 2.057414e-05 0.9678993  0.9678993   0.7678166   0.5184822
5    0.009239404 5.219697e-04 5.6493872  5.6493872   2.5696559   0.2733855
6    0.009239404 1.394707e-05 1.5095206  1.5095206   1.0856553   0.4045535
7    0.041251545 1.642384e-03 3.9813875  3.9813875   2.5011723   0.2053616
8    0.041251545 6.313889e-05 1.5305824  1.5305824   1.1350302   0.4161983
9    0.007587914 2.873838e-04 3.7873894  3.7873894   1.9860259   0.2851764
10   0.007587914 1.065162e-05 1.4037609  1.4037609   0.9475002   0.4615559
11   0.025630407 1.044889e-03 4.0767549  4.0767549   2.4235611   0.2193477
12   0.025630407 3.687465e-05 1.4387070  1.4387070   1.1436702   0.3725455
13   0.007125496 3.218081e-04 4.5162900  4.5162900   1.7651382   0.3742689
14   0.007125496 9.707071e-06 1.3623010  1.3623010   0.9140759   0.4653316
15   0.021256489 9.349899e-04 4.3986093  4.3986093   2.3457425   0.2006471
16   0.021256489 3.743545e-05 1.7611307  1.7611307   1.0996695   0.4196612
   prop_size_001 prop_size_005 prop_size_010 mean_count_p count_size_001
1           0.00          0.04          0.04    0.9043513           0.00
2           0.01          0.02          0.05    0.6140676           0.00
3           0.02          0.06          0.06    0.7427102           0.00
4           0.02          0.04          0.07    0.6713238           0.00
5           0.45          0.57          0.57    0.3181477           0.28
6           0.06          0.18          0.26    0.4487820           0.06
7           0.38          0.57          0.57    0.2380981           0.30
8           0.07          0.21          0.27    0.4571812           0.05
9           0.23          0.45          0.45    0.3637978           0.13
10          0.03          0.09          0.14    0.5483525           0.03
11          0.37          0.47          0.62    0.3009331           0.16
12          0.07          0.16          0.18    0.4994845           0.00
13          0.21          0.33          0.33    0.4681521           0.13
14          0.05          0.08          0.11    0.5752778           0.02
15          0.40          0.54          0.54    0.3309187           0.12
16          0.10          0.15          0.21    0.5626641           0.01
   count_size_005 count_size_010
1            0.00           0.04
2            0.01           0.02
3            0.01           0.01
4            0.01           0.02
5            0.45           0.57
6            0.12           0.18
7            0.46           0.46
8            0.14           0.24
9            0.23           0.45
10           0.07           0.09
11           0.37           0.38
12           0.06           0.12
13           0.21           0.33
14           0.05           0.08
15           0.30           0.30
16           0.01           0.10

mc_grid() works correctly with convergence setting

   M     n  iterations  max sign_level initial_est split mean_gauge      avar
1 10  1000 convergence NULL       0.05 robustified   0.5     0.0519 0.1188556
2 10 10000 convergence NULL       0.05 robustified   0.5     0.0496 0.1188556
  mean_avar_est    var_gauge var_ratio var_ratio2 mean_prop_t mean_prop_p
1     0.1188556 1.058778e-04 0.8908104  0.8908104   0.7246317   0.5329563
2     0.1188556 2.068444e-05 1.7403007  1.7403007   1.0268180   0.4136282
  prop_size_001 prop_size_005 prop_size_010 mean_count_p count_size_001
1             0           0.1           0.1    0.4228190            0.1
2             0           0.2           0.3    0.2921023            0.3
  count_size_005 count_size_010    conv_freq
1            0.1            0.2 1, 3, 3,....
2            0.3            0.3 4, 2, 1,....
   M     n  iterations max sign_level initial_est split mean_gauge      avar
1 10  1000 convergence   5       0.05 robustified   0.5    0.05180 0.1188556
2 10 10000 convergence   5       0.05 robustified   0.5    0.04966 0.1188556
  mean_avar_est    var_gauge var_ratio var_ratio2 mean_prop_t mean_prop_p
1     0.1188556 9.951111e-05  0.837244   0.837244   0.7154591   0.5314747
2     0.1188556 1.926711e-05  1.621052   1.621052   1.0036131   0.4134618
  prop_size_001 prop_size_005 prop_size_010 mean_count_p count_size_001
1             0           0.0           0.1    0.4209751            0.1
2             0           0.2           0.3    0.2888137            0.3
  count_size_005 count_size_010  conv_freq
1            0.1            0.2 1, 3, 3, 3
2            0.3            0.3         10


Try the robust2sls package in your browser

Any scripts or data that you put into this service are public.

robust2sls documentation built on Jan. 11, 2023, 5:13 p.m.