R/my.snip.rpart.R

Defines functions my.snip.rpart

# my.snip.rpart.R: Copied from rpart package version 3.1.54
#                  Mouse snipping has been commented out

#SCCS  @(#)snip.rpart.s 1.10 10/30/01
#
#  This routine "throws away" branches
#
my.snip.rpart <- function(x, toss) {
    if(!inherits(x, 'rpart')) stop("Not an rpart object")

    # mouse snipping is not supported in this version of this function
    stopifnot(!missing(toss) && length(toss))
    # if(missing(toss) || length(toss)==0L) {
    #     toss <- snip.rpart.mouse(x)
    #     if(length(toss)==0L) return(x)
    # }

    ff   <- x$frame
    id    <- as.numeric(row.names(ff))
    ff.n  <- length(id)

    toss <- unique(toss)
    toss.idx <- match(toss, id, nomatch=0) #the rows of the named nodes
    if(any(toss.idx ==0L)) {
        warning("Nodes ", toss[toss.idx==0L], " are not in this tree")
        toss <- toss[toss.idx>0L]
        toss.idx <- toss.idx[toss.idx>0L]
    }

#    if(any(toss==1))  {
#   # a special case that causes grief later
#   warning("Can't prune away the root node and still have a tree!")
#        return(NULL)
#   }

    # Now add all of the descendants of the selected nodes
    #   We do this be finding all node's parents.
    #        (Division by 2 gives the parent of any node.)
    #   At each step we make id2 <- parent(id2), and augment 'toss' with
    #     found children.  The loop should take <  log_2(maxdepth)/2 steps
    id2 <- id
    while (any(id2>1)) {
        id2 <- floor(id2/2)
        xx <- (match(id2, toss, nomatch=0) >0)
        toss <- c(toss, id[xx])
        id2[xx] <- 0
    }

    # Now "toss" contains all of the nodes that should not be splits
    temp <- match(floor(toss/2) , toss, nomatch=0)  #which are leaves?
    newleaf <- match(toss[temp==0], id)             # row numbers, leaves
    keepit <- (1:ff.n)[is.na(match(id,toss))]  # row numbers to be let be

    # Compute the parent row for each row in the splits structure
    #  Then "thin out" the splits and csplit components
    n.split <- rep((1L:ff.n), ff$ncompete + ff$nsurrogate+ 1*(ff$var!='<leaf>'))
    split <- x$splits[match(n.split, keepit, nomatch=0) >0, ,drop=FALSE]
    temp <- split[,2L] >1      #which rows point to categoricals?
    if(any(temp)) {
        x$csplit <- x$csplit[split[temp,4L], , drop=FALSE]
        split[temp,4] <- 1
        if(is.matrix(x$csplit)) split[temp,4L] <- 1L:nrow(x$csplit)
    }
    else x$csplit <- NULL
    x$splits <- split

    # Thin out unneeded rows in the frame component
    ff$ncompete[newleaf] <- ff$nsurrogate[newleaf] <- 0L
    ff$var[newleaf]     <- "<leaf>"
    x$frame <- ff[sort(c(keepit, newleaf)),]

    # Now do the 'parents' loop one more time, to fix up the "where"
    #   vector
    # This pass requires log_2(depth) iterations
    #
    id2 <- id[x$where]         #the list of old leaf nodes
    id3 <- id[sort(c(keepit, newleaf))]
    temp <- match(id2, id3, nomatch=0)
    while (any(temp==0)) {
        id2[temp==0] <- floor(id2[temp==0]/2)
        temp <- match(id2, id3, nomatch=0)
    }
    x$where <- match(id2, id3)

    x
}

Try the rpart.plot package in your browser

Any scripts or data that you put into this service are public.

rpart.plot documentation built on May 29, 2017, 9:36 a.m.