Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
echo=TRUE,
comment = "#>",
warning=FALSE,
message=FALSE,
fig.width = 7,
fig.height = 5
)
## ----setup, echo=FALSE--------------------------------------------------------
library(rplanes)
## ----message = FALSE----------------------------------------------------------
library(rplanes)
library(dplyr)
library(purrr)
library(ggplot2)
## ----eval=FALSE---------------------------------------------------------------
# hosp_all <-
# read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes")) %>%
# select(date, location, flu.admits) %>%
# mutate(date = as.Date(date))
#
# head(hosp_all)
## ----eval = TRUE, echo=FALSE--------------------------------------------------
hosp_all <-
read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes")) %>%
select(date, location, flu.admits) %>%
mutate(date = as.Date(date))
knitr::kable(head(hosp_all))
## -----------------------------------------------------------------------------
observed_signal <- to_signal(input = hosp_all, outcome = "flu.admits", type = "observed", resolution = "weeks", horizon = NULL)
## -----------------------------------------------------------------------------
prepped_seed <- plane_seed(observed_signal, cut_date = "2022-10-29")
## ----echo=TRUE, eval=FALSE----------------------------------------------------
# forecast_fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
#
# read.csv(forecast_fp) %>%
# head(.)
## ----echo=FALSE, eval=TRUE----------------------------------------------------
forecast_fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
read.csv(forecast_fp) %>%
head(.) %>%
knitr::kable(.)
## ----echo=TRUE, eval=FALSE----------------------------------------------------
# prepped_forecast <- read_forecast(forecast_fp)
#
# head(prepped_forecast)
## ----echo=FALSE, eval=TRUE----------------------------------------------------
prepped_forecast <- read_forecast(forecast_fp)
knitr::kable(head(prepped_forecast))
## -----------------------------------------------------------------------------
forecast_signal <-
prepped_forecast %>%
to_signal(., outcome = "flu.admits", type = "forecast", resolution = "weeks", horizon = 4)
## -----------------------------------------------------------------------------
scores <- plane_score(input = forecast_signal, seed = prepped_seed)
## ----echo=TRUE, eval=FALSE----------------------------------------------------
# res <-
# scores$scores_summary %>%
# map_df(., as_tibble)
#
# head(res)
## ----echo=FALSE, eval=TRUE----------------------------------------------------
res <-
scores$scores_summary %>%
map_df(., as_tibble)
knitr::kable(head(res))
## ----fig.align = 'center'-----------------------------------------------------
res %>%
count(n_flags) %>%
mutate(n_flags = as.character(n_flags)) %>%
ggplot(aes(n_flags,n)) +
geom_col() +
labs(x = "Number of flags raised", y = "Count")
## ----eval=FALSE---------------------------------------------------------------
# hosp_pre23 <-
# read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes")) %>%
# select(date, location, flu.admits) %>%
# mutate(date = as.Date(date)) %>%
# filter(date < as.Date("2023-01-01"))
#
# head(hosp_pre23)
## ----eval = TRUE, echo=FALSE--------------------------------------------------
hosp_pre23 <-
read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes")) %>%
select(date, location, flu.admits) %>%
mutate(date = as.Date(date)) %>%
filter(date < as.Date("2023-01-01"))
knitr::kable(head(hosp_pre23))
## -----------------------------------------------------------------------------
observed_signal <- to_signal(input = hosp_pre23, outcome = "flu.admits", type = "observed", resolution = "weeks", horizon = NULL)
## -----------------------------------------------------------------------------
prepped_seed <- plane_seed(observed_signal, cut_date = "2022-12-24")
## -----------------------------------------------------------------------------
scores <- plane_score(observed_signal, seed = prepped_seed, components = c("repeat","diff"))
## ----echo=TRUE, eval=FALSE----------------------------------------------------
# res <-
# scores$scores_summary %>%
# map_df(., as_tibble)
#
# head(res)
## ----echo=FALSE, eval=TRUE----------------------------------------------------
res <-
scores$scores_summary %>%
map_df(., as_tibble)
knitr::kable(head(res))
## ----fig.align = 'center'-----------------------------------------------------
res %>%
count(n_flags) %>%
mutate(n_flags = as.character(n_flags)) %>%
ggplot(aes(n_flags,n)) +
geom_col() +
labs(x = "Number of flags raised", y = "Count")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.