Performs joint selection in Generalized Linear Mixed Models (GLMMs) using penalized likelihood methods. Specifically, the Penalized Quasi-Likelihood (PQL) is used as a loss function, and penalties are then "added on" to perform simultaneous fixed and random effects selection. Regularized PQL avoids the need for integration (or approximations such as the Laplace's method) during the estimation process, and so the full solution path for model selection can be constructed relatively quickly.

Author | Francis K.C. Hui, Samuel Mueller, A.H. Welsh |

Date of publication | 2016-10-07 09:23:08 |

Maintainer | Francis Hui <fhui28@gmail.com> |

License | GPL-2 |

Version | 0.5 |

**build.start.fit:** Constructs a start fit for use in the 'rpql' function

**calc.marglogL:** Calculate the marginal log-likelihood for a GLMM fitted using...

**gendat.glmm:** Simulates datasets based on a Generalized Linear Mixed Model...

**lseq:** Generates a sequence of tuning parameters on the log scale

**nb2:** A negative binomial family

**rpql:** Joint effects selection in GLMMs using regularized PQL.

**rpql-package:** Joint effects selection in GLMMs using regularized PQL

**rpqlseq:** Wrapper function for joint effects selection in GLMMs using...

**summary.rpql:** Summary of GLMM fitted using regularized PQL.

rpql

rpql/NAMESPACE

rpql/R

rpql/R/rpql-main.R
rpql/R/auxilaryfunctions.R
rpql/MD5

rpql/DESCRIPTION

rpql/man

rpql/man/lseq.Rd
rpql/man/rpql-package.Rd
rpql/man/nb2.Rd
rpql/man/build.start.fit.Rd
rpql/man/rpqlseq.Rd
rpql/man/calc.marglogL.Rd
rpql/man/rpql.Rd
rpql/man/gendat.glmm.Rd
rpql/man/summary.rpql.Rd
Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.