View source: R/mainFunctions.R
| qic | R Documentation |
Calculate information criterion for penalized quantile regression models. Currently not exported.
qic(model, n, method = c("BIC", "AIC", "PBIC"))
model |
model from a rq.pen.seq() object |
n |
Sample size |
method |
Choice of BIC, AIC or PBIC, a large p BIC. |
Let \hat{\beta} be the coefficient vectors for the estimated model. Function returns the value
\log(\sum_{i=1}^n w_i \rho_\tau(y_i-x_i^\top\hat{\beta})) + d*b/(2n),
where d is the number of nonzero coefficients and b depends on the method used. For AIC b=2,
for BIC b=log(n) and for PBIC d=log(n)*log(p) where p is the dimension of \hat{\beta}. The values of w_i default to one and are set using weights when fitting the models. Returns this value for each coefficient vector in the model, so one
for every value of \lambda.
Ben Sherwood, ben.sherwood@ku.edu
qrbicrqPen
## Not run:
set.seed(1)
x <- matrix(runif(800),ncol=8)
y <- 1 + x[,1] + x[,8] + (1+.5*x[,3])*rnorm(100)
m1 <- rq.pen(x,y,tau=c(.25,.75))
# returns the IC values for tau=.25
qic(m1$models[[1]],m1$n)
# returns the IC values for tau=.75
qic(m1$models[[2]],m1$n)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.