| PcaCov | R Documentation | 
Robust PCA are obtained by replacing the classical covariance matrix 
by a robust covariance estimator. This can be one of the available 
in rrcov estimators, i.e. MCD, OGK, M or S estimator.
PcaCov(x, ...)
## Default S3 method:
PcaCov(x, k = ncol(x), kmax = ncol(x), cov.control=CovControlMcd(), 
    scale = FALSE, signflip = TRUE, crit.pca.distances = 0.975, trace=FALSE, ...)
## S3 method for class 'formula'
PcaCov(formula, data = NULL, subset, na.action, ...)
formula | 
 a formula with no response variable, referring only to numeric variables.  | 
data | 
 an optional data frame (or similar: see
  | 
subset | 
 an optional vector used to select rows (observations) of the
data matrix   | 
na.action | 
 a function which indicates what should happen
when the data contain   | 
... | 
 arguments passed to or from other methods.  | 
x | 
 a numeric matrix (or data frame) which provides the data for the principal components analysis.  | 
k | 
 number of principal components to compute. If   | 
kmax | 
 maximal number of principal components to compute.
Default is   | 
cov.control | 
 specifies which covariance estimator to use by providing 
a   | 
.
scale | 
 a value indicating whether and how the variables should be scaled
to have unit variance (only possible if there are no constant 
variables). If   | 
signflip | 
 a logical value indicating wheather to try to solve the sign indeterminancy of the loadings -   
ad hoc approach setting the maximum element in a singular vector to be positive. Default is   | 
crit.pca.distances | 
 criterion to use for computing the cutoff values for the orthogonal and score distances. Default is 0.975.  | 
trace | 
 whether to print intermediate results. Default is   | 
PcaCov, serving as a constructor for objects of class PcaCov-class 
is a generic function with "formula" and "default" methods. For details see the relevant references.
An S4 object of class PcaCov-class which is a subclass of the 
virtual class PcaRobust-class. 
Valentin Todorov valentin.todorov@chello.at
Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v032.i03")}.
## PCA of the Hawkins Bradu Kass's Artificial Data
##  using all 4 variables
    data(hbk)
    pca <- PcaCov(hbk)
    pca
## Compare with the classical PCA
    prcomp(hbk)
## or  
    PcaClassic(hbk)
    
## If you want to print the scores too, use
    print(pca, print.x=TRUE)
## Using the formula interface
    PcaCov(~., data=hbk)
## To plot the results:
    plot(pca)                    # distance plot
    pca2 <- PcaCov(hbk, k=2)  
    plot(pca2)                   # PCA diagnostic plot (or outlier map)
    
## Use the standard plots available for for prcomp and princomp
    screeplot(pca)    
    biplot(pca)    
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.