QdaCov | R Documentation |
Performs robust quadratic discriminant analysis and returns
the results as an object of class QdaCov
(aka constructor).
QdaCov(x, ...)
## Default S3 method:
QdaCov(x, grouping, prior = proportions, tol = 1.0e-4,
method = CovControlMcd(), ...)
x |
a matrix or data frame containing the explanatory variables (training set). |
grouping |
grouping variable: a factor specifying the class for each observation. |
prior |
prior probabilities, default to the class proportions for the training set. |
tol |
tolerance |
method |
method |
... |
arguments passed to or from other methods |
details
Returns an S4 object of class QdaCov
Still an experimental version!
Valentin Todorov valentin.todorov@chello.at
Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v032.i03")}.
CovMcd
## Example anorexia
library(MASS)
data(anorexia)
## start with the classical estimates
qda <- QdaClassic(Treat~., data=anorexia)
predict(qda)@classification
## try now the robust LDA with the default method (MCD with pooled whitin cov matrix)
rqda <- QdaCov(Treat~., data= anorexia)
predict(rqda)@classification
## try the other methods
QdaCov(Treat~., data= anorexia, method="sde")
QdaCov(Treat~., data= anorexia, method="M")
QdaCov(Treat~., data= anorexia, method=CovControlOgk())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.