Nothing
######
## VT::03.08.2019
##
##
## roxygen2::roxygenise("c:/Users/valen/OneDrive/MyRepo/R/rrcov", load_code=roxygen2:::load_installed, clean=TRUE)
##
#'
#'
#'
#' Computer Hardware
#'
#' A data set containing relative CPU performance data of 209 machines on 8 variables.
#; The \code{rownames} are the vendor and model descriptions. Six of the variables
#' are predictive, one (\code{PRP}) is the goal field and one (\code{ERP}) is the
#' linear regression's guess. The estimated relative performance values were
#' estimated by the authors using a linear regression method. See their article
#' (Ein-Dor and Feldmesser, CACM 4/87, pp 308-317) for more details on how the
#' relative performance values were set.
#'
#' @name machines
#' @docType data
#' @usage data(machines)
#' @format A data frame with 209 rows and 8 variables
#' The variables are as follows:
#'
#' \itemize{
#' \item MMIN: minimum main memory in kilobytes (integer)
#' \item MMAX: maximum main memory in kilobytes (integer)
#' \item CACH: cache memory in kilobytes (integer)
#' \item CHMIN: minimum channels in units (integer)
#' \item CHMAX: maximum channels in units (integer)
#' \item PRP: published relative performance (integer)
#' \item ERP: estimated relative performance from the original article (integer)
#' }
#'
#' @source \href{http://archive.ics.uci.edu/ml/datasets/Computer+Hardware?ref=datanews.io}{UCI Archive}
#'
#' @references
#' Phillip Ein-Dor and Jacob Feldmesser (1987), Attributes of the performance
#' of central processing units: A relative performance prediction model,
#' \emph{Communications of the ACM}, \bold{30}, 4, pp 308-317.
#'
#' M. Hubert, P. J. Rousseeuw and T. Verdonck (2009), Robust PCA for skewed data and
#' its outlier map, \emph{Computational Statistics & Data Analysis}, \bold{53}, 2264--2274.
#'
#'
#' @examples
#'
#' data(machines)
#'
#' ## Compute the medcouple of each variable of the Computer hardware data
#' data.frame(MC=round(apply(machines, 2, mc),2))
#'
#' ## Plot a pairwise scaterplot matrix
#' pairs(machines[,1:6])
#'
#' mcd <- CovMcd(machines[,1:6])
#' plot(mcd, which="pairs")
#'
#' ## Remove the rownames (too long)
#' rownames(machines) <- NULL
#'
#' ## Start with robust PCA based on MCD (P << n)
#' (pca1 <- PcaHubert(machines, k=3))
#' plot(pca1, main="ROBPCA-MCD", off=0.03)
#'
#' ## PCA with the projection algoritm of Hubert
#' (pca2 <- PcaHubert(machines, k=3, mcd=FALSE))
#' plot(pca2, main="ROBPCA-SD", off=0.03)
#'
#' ## PCA with the adjusted for skewness algorithm of Hubert et al (2009)
#' (pca3 <- PcaHubert(machines, k=3, mcd=FALSE, skew=TRUE))
#' plot(pca3, main="ROBPCA-AO", off=0.03)
#'
#' @keywords datasets
NULL
#'
#' Skull dimensions of the wolf \emph{Canis lupus} L.
#'
#' A data set containing skull morphometric measurements on Rocky Mountain
#' and Arctic wolves (\emph{Canis Lupus L.}). The tdata are published in Morrison (1990),
#' originally from Jolicoeur (1959).
#'
#' @name wolves
#' @docType data
#' @usage data(wolves)
#' @format A data frame with 25 rows and 12 variables.
#' The variables are as follows (all measurements are in milimeters):
#'
#' \itemize{
#' \item \code{class}: a factor presenting the combinations of \code{location}
#' and \code{sex}. The levels are \code{arf} \code{arm} \code{rmf} and \code{rmm}
#' \item \code{location}: a factor with levels \code{ar}=Arctic, \code{rm}=Rocky Mountain
#' \item \code{sex}: a factor with levels \code{f}=female, \code{m}=male
#' \item \code{x1}: palatal length
#' \item \code{x2}: postpalatal length
#' \item \code{x3}: zygomatic width
#' \item \code{x4}: palatal width outside first upper molars
#' \item \code{x5}: palatal width inside second upper molars
#' \item \code{x6}: postglenoid foramina width
#' \item \code{x7}: interorbital width
#' \item \code{x8}: braincase width
#' \item \code{x9}: crown length
#' }
#'
#' @source
#' Jolicoeur, P. Multivariate geographical variation in the wolf \emph{Canis lupis L.},
#' \emph{Evolution}, XIII, 283--299.
#'
#' Morrison, D. F. \emph{Multivariate Statistical Methods}, (3rd ed.), 1990.
#' New York: McGraw-Hill, p. 288--289.
#'
#' @examples
#'
#' data(wolves)
#'
#' ## Remove the factors location and sex which we will not use for now
#' x <- wolves[,-c(2:3)]
#'
#' ## Plot a pairwise scaterplot matrix
#' pairs(x[,2:10])
#'
#' mcd <- CovMcd(x[, 2:10])
#' plot(mcd, which="pairs")
#'
#' lda <- LdaClassic(class~., data=x)
#' lda@center
#' lda@cov
#'
#' predict(lda)
#'
#' @keywords datasets
NULL
#'
#' Fruit data set
#'
#' A data set that contains the spectra of six different cultivars of
#' the same fruit (cantaloupe - \emph{Cucumis melo} L. Cantaloupensis
#' group) obtained from Colin Greensill (Faculty of Engineering and Physical Systems, Central Queensland
#' University, Rockhampton, Australia). The total data set contained 2818 spectra measured in 256 wavelengths.
#' For illustrative purposes are considered only three cultivars out of it, named D, M and
#' HA with sizes 490, 106 and 500, respectively. Thus the data set thus contains 1096 observations.
#' For more details about this data set see the references below.
#' @name fruit
#' @docType data
#' @usage data(fruit)
#' @format A data frame with 1096 rows and 257 variables (one grouping variable -- \code{cultivar} -- and 256 measurement variables).
#' @source
#' Colin Greensill (Faculty of Engineering and Physical Systems, Central Queensland
#' University, Rockhampton, Australia).
#'
#' @references
#' Hubert, M. and Van Driessen, K., (2004). Fast and robust discriminant analysis.
#' \emph{Computational Statistics and Data Analysis}, \bold{45}(2):301--320.
#' \doi{10.1016/S0167-9473(02)00299-2}.
#'
#' Vanden Branden, K and Hubert, M, (2005). Robust classification in high dimensions based on the SIMCA Method.
#' \emph{Chemometrics and Intelligent Laboratory Systems}, \bold{79}(1-2), pp. 10--21.
#' \doi{10.1016/j.chemolab.2005.03.002}.
#'
#' Hubert, M, Rousseeuw, PJ and Verdonck, T, (2012). A Deterministic Algorithm for Robust Location and Scatter.
#' \emph{Journal of Computational and Graphical Statistics}, \bold{21}(3), pp 618--637.
#' \doi{10.1080/10618600.2012.672100}.
#'
#' @examples
#'
#' data(fruit)
#' table(fruit$cultivar)
#'
#' @keywords datasets
NULL
#' Johns Hopkins University Ionosphere database.
#'
#' ''This radar data was collected by a system in Goose Bay, Labrador. This
#' system consists of a phased array of 16 high-frequency antennas with a
#' total transmitted power on the order of 6.4 kilowatts. The targets
#' were free electrons in the ionosphere.
#' "good" radar returns are those showing evidence of some type of structure
#' in the ionosphere. "bad" returns are those that do not; their signals pass
#' through the ionosphere.
#' Received signals were processed using an autocorrelation function whose
#' arguments are the time of a pulse and the pulse number. There were 17
#" pulse numbers for the Goose Bay system. Instances in this databse are
#' described by 2 attributes per pulse number, corresponding to the complex
#' values returned by the function resulting from the complex electromagnetic
#' signal.'' [UCI archive]
#'
#' @name ionosphere
#' @docType data
#' @usage data(ionosphere)
#' @format A data frame with 351 rows and 33 variables: 32 measurements and one
#' (the last, \code{Class}) grouping variable: 225 \code{'good'} and 126 \code{'bad'}.
#'
#' The original dataset at UCI contains 351 rows and 35 columns. The first 34
#' columns are features, the last column contains the classification label of
#' 'g' and 'b'. The first feature is binary and the second one is only 0s,
#; therefore these two features were removed. We remain with 32 featres and
#' one grouping variable - factor with labels 'good' and 'bad'.
#'
#' @source
#' Source: Space Physics Group; Applied Physics Laboratory; Johns Hopkins University; Johns Hopkins Road; Laurel; MD 20723
#'
#' Donor: Vince Sigillito (vgs@aplcen.apl.jhu.edu)
#'
#' The data have been taken from the UCI Repository Of Machine Learning Databases at
#' \url{https://archive.ics.uci.edu/ml/datasets/ionosphere}
#'
#' This data set, with the original 34 features is available in the package \pkg{mlbench}
#' and a different data set (refering to the same UCI repository) is available in
#' the package \code{dprep} (archived on CRAN).
#' @references
#' Sigillito, V. G., Wing, S. P., Hutton, L. V., and Baker, K. B. (1989).
#' Classification of radar returns from the ionosphere using neural
#' networks. Johns Hopkins APL Technical Digest, 10, 262-266.
#' @examples
#' data(ionosphere)
#' ionosphere[, 1:6] |> pairs()
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.