r4 | R Documentation |
Perform robust reduced-rank regression.
r4( Y, X, maxrank = min(dim(Y), dim(X)), method = c("rowl0", "rowl1", "entrywise"), Gamma = NULL, ic.type = c("AIC", "BIC", "PIC"), modstr = list(), control = list() )
Y |
a matrix of response (n by q) |
X |
a matrix of covariate (n by p) |
maxrank |
maximum rank for fitting |
method |
outlier detection method, either entrywise or rowwise |
Gamma |
weighting matrix in the loss function |
ic.type |
information criterion, AIC, BIC or PIC |
modstr |
a list of model parameters controlling the model fitting |
control |
a list of parameters for controlling the fitting process |
The model parameters can be controlled through argument modstr
.
The available elements include
nlam: parameter in the augmented Lagrangian function.
adaptive: if TRUE
, use leverage values for adaptive
penalization. The default value is FALSE
.
weights: user supplied weights for adaptive penalization.
minlam: maximum proportion of outliers.
maxlam: maximum proportion of good observations.
delid: discarded observation indices for initial estimation.
The model fitting can be controlled through argument control
.
The available elements include
epsilon: convergence tolerance.
maxit: maximum number of iterations.
qr.tol: tolerance for qr decomposition.
tol: tolerance.
a list consisting of
coef.path |
solutuon path of regression coefficients |
s.path |
solutuon path of sparse mean shifts |
s.norm.path |
solutuon path of the norms of sparse mean shifts |
ic.path |
paths of information criteria |
ic.smooth.path |
smoothed paths of information criteria |
lambda.path |
paths of the tuning parameter |
id.solution |
ids of the selected solutions on the path |
ic.best |
lowest values of the information criteria |
rank.best |
rank values of selected solutions |
coef |
estimated regression coefficients |
s |
estimated sparse mean shifts |
rank |
rank estimate |
She, Y. and Chen, K. (2017) Robust reduced-rank regression. Biometrika, 104 (3), 633–647.
## Not run: library(rrpack) n <- 100; p <- 500; q <- 50 xrank <- 10; nrank <- 3; rmax <- min(n, p, q, xrank) nlam <- 100; gamma <- 2 rho_E <- 0.3 rho_X <- 0.5 nlev <- 0 vlev <- 0 vout <- NULL vlevsd <- NULL nout <- 0.1 * n s2n <- 1 voutsd <- 2 simdata <- rrr.sim5(n, p, q, nrank, rx = xrank, s2n = s2n, rho_X = rho_X, rho_E = rho_E, nout = nout, vout = vout, voutsd = voutsd,nlev = nlev,vlev=vlev,vlevsd=vlevsd) Y <- simdata$Y X <- simdata$X fit <- r4(Y, X, maxrank = rmax, method = "rowl0", ic.type= "PIC") summary(fit) coef(fit) which(apply(fit$s,1,function(a)sum(a^2))!=0) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.