Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.height = 4,
fig.width = 7
)
library(rsurvstat)
library(sf)
## -----------------------------------------------------------------------------
entero = get_timeseries(
diseases$Enterovirus,
"Count",
age_group = age_groups$zero_fifteen)
ggplot2::ggplot(
entero,
ggplot2::aes(x=date, y=count, colour = age_name)
) +
ggplot2::geom_line()
## -----------------------------------------------------------------------------
entero2 = entero %>%
fit_population() %>%
dplyr::mutate(weekly_incidence_per_100K = count/population*100000)
ggplot2::ggplot(
entero2,
ggplot2::aes(x=date, y=weekly_incidence_per_100K, colour=age_name)
) +
ggplot2::geom_line()
## -----------------------------------------------------------------------------
covid_by_nuts = get_timeseries(
disease = diseases$`COVID-19`,
measure="Incidence",
years = 2020:2022,
geography = "nuts"
)
ggplot2::ggplot(
covid_by_nuts,
ggplot2::aes(x=date, y=incidence, colour=geo_name)
) +
ggplot2::geom_line() +
ggplot2::guides(colour = ggplot2::guide_none())
## -----------------------------------------------------------------------------
# Pick a set of dates around the peak:
peak_date = covid_by_nuts$date[covid_by_nuts$incidence == max(covid_by_nuts$incidence)]
peak_date = peak_date+c(-14,-7, 0)
peak = covid_by_nuts %>% dplyr::filter(date %in% peak_date)
ggplot2::ggplot(
NutsKey71Map %>% dplyr::inner_join(peak, by=c("Id" = "geo_code")),
ggplot2::aes(fill = incidence)
)+
ggplot2::geom_sf()+
ggplot2::facet_wrap(~date,nrow = 1)+
ggplot2::scale_fill_viridis_c()
## -----------------------------------------------------------------------------
pneumo_by_serotype = get_snapshot(
disease = diseases$`Pneumococcus (IfSG`,
disease_subtype = TRUE,
season = 2024,
season_start = 27
)
pneumo_by_serotype = pneumo_by_serotype %>%
# remove non typed and unknowns:
dplyr::filter(startsWith(disease_subtype_name,"Sero")) %>%
# removed serotypes with no detected cases:
dplyr::filter(!is.na(count))
ggplot2::ggplot(
pneumo_by_serotype,
ggplot2::aes(x=disease_subtype_name, y=count)
)+
ggplot2::geom_bar(stat="identity")+
ggplot2::theme(axis.text.x = ggplot2::element_text(size = 8, angle = 90,hjust=1,vjust=0.5))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.