Nothing
## ----setup, include = FALSE, fig.align='center', warning = F, message=F-------
options(tinytex.verbose = TRUE)
knitr::opts_chunk$set(echo = TRUE)
library(rtpcr)
## ----eval = F-----------------------------------------------------------------
# # Installing from CRAN
# install.packages("rtpcr")
#
# # Loading the package
# library(rtpcr)
## ----eval = F-----------------------------------------------------------------
# devtools::install_github("mirzaghaderi/rtpcr", build_vignettes = TRUE)
## ----eval= F------------------------------------------------------------------
# # Applying the efficiency function
# data <- read.csv(system.file("extdata", "data_efficiency1.csv", package = "rtpcr"))
# data
# dilutions Gene1 Gene2 Gene3
# 1.00 25.58 24.25 22.61
# 1.00 25.54 24.13 22.68
# 1.00 25.50 24.04 22.63
# 0.50 26.71 25.56 23.67
# 0.50 26.73 25.43 23.65
# 0.50 26.87 26.01 23.70
# 0.20 28.17 27.37 25.11
# 0.20 28.07 26.94 25.12
# 0.20 28.11 27.14 25.11
# 0.10 29.20 28.05 26.17
# 0.10 29.49 28.89 26.15
# 0.10 29.07 28.32 26.15
# 0.05 30.17 29.50 27.12
# 0.05 30.14 29.93 27.14
# 0.05 30.12 29.71 27.16
# 0.02 31.35 30.69 28.52
# 0.02 31.35 30.54 28.57
# 0.02 31.35 30.04 28.53
# 0.01 32.55 31.12 29.49
# 0.01 32.45 31.29 29.48
# 0.01 32.28 31.15 29.26
#
# # Analysis
# efficiency(data)
#
# $Efficiency
# Gene Slope R2 E
# 1 Gene1 -3.388094 0.9965504 1.973110
# 2 Gene2 -3.528125 0.9713914 1.920599
# 3 Gene3 -3.414551 0.9990278 1.962747
#
# $Slope_compare
# $contrasts
# contrast estimate SE df t.ratio p.value
# C2H2.26 - C2H2.01 0.1400 0.121 57 1.157 0.4837
# C2H2.26 - GAPDH 0.0265 0.121 57 0.219 0.9740
# C2H2.01 - GAPDH -0.1136 0.121 57 -0.938 0.6186
## ----eval= F------------------------------------------------------------------
# # An example of a properly arranged dataset from a repeated-measures experiment.
# data <- read.csv(system.file("extdata", "data_repeated_measure_1.csv", package = "rtpcr"))
# data
#
# time id E_Target Ct_target E_Ref Ct_Ref
# 1 1 2 18.92 2 32.77
# 1 2 2 15.82 2 32.45
# 1 3 2 19.84 2 31.62
# 2 1 2 19.46 2 33.03
# 2 2 2 17.56 2 33.24
# 2 3 2 19.74 2 32.08
# 3 1 2 15.73 2 32.95
# 3 2 2 17.21 2 33.64
# 3 3 2 18.09 2 33.40
#
# # Repeated measure analysis
# res <- ANOVA_DDCt(
# data,
# numOfFactors = 1,
# numberOfrefGenes = 1,
# mainFactor.column = 1,
# block = NULL, model = wDCt ~ time + (1 | id))
#
#
# # Anova analysis
# ANOVA_DDCt(
# data,
# mainFactor.column = 1,
# numOfFactors = 1,
# numberOfrefGenes = 1,
# block = NULL)
#
#
# # Paired t.test (equivalent to repeated measure analysis, but not always the same results, due to different calculation methods!)
# TTEST_DDCt(
# data[1:6,],
# numberOfrefGenes = 1,
# paired = T)
#
#
# # Anova analysis
# data <- read.csv(system.file("extdata", "data_2factorBlock3ref.csv", package = "rtpcr"))
# res <- ANOVA_DDCt(
# x = data,
# mainFactor.column = 1,
# numOfFactors = 2,
# numberOfrefGenes = 1,
# block = "block",
# analyseAllTarget = TRUE)
## ----eval= F------------------------------------------------------------------
# # Relative expression table for the specified column in the input data:
# df <- res$relativeExpression
# df
# Relative Expression
# gene contrast RE log2FC pvalue sig LCL UCL se Lower.se.RE Upper.se.RE Lower.se.log2FC Upper.se.log2FC
# PO R 1.0000 0.0000 1.0000 0.0000 0.0000 0.5506 0.6828 1.4647 0.0000 0.0000
# PO S vs R 11.6130 3.5377 0.0001 *** 4.4233 30.4888 0.2286 9.9115 13.6066 3.0193 4.1450
# GAPDH R 1.0000 0.0000 1.0000 0.0000 0.0000 0.4815 0.7162 1.3962 0.0000 0.0000
# GAPDH S vs R 6.6852 2.7410 0.0001 *** 3.0687 14.5641 0.3820 5.1301 8.7118 2.1034 3.5719
# ref2 R 1.0000 0.0000 1.0000 0.0000 0.0000 0.6928 0.6186 1.6164 0.0000 0.0000
# ref2 S vs R 0.9372 -0.0936 0.9005 0.3145 2.7929 0.2414 0.7927 1.1079 -0.1107 -0.0792
## ----eval= F, warning = F, fig.height = 7, fig.width = 12.5, fig.align = 'center', warning = F----
# data <- read.csv(system.file("extdata", "data_3factor.csv", package = "rtpcr"))
# #Perform analysis first
# res <- ANOVA_DCt(
# data,
# numOfFactors = 3,
# numberOfrefGenes = 1,
# block = NULL)
#
# df <- res$relativeExpression
# df
# # Generate three-factor bar plot
# plotFactor(
# df,
# x_col = "SA",
# y_col = "log2FC",
# group_col = "Type",
# facet_col = "Conc",
# Lower.se_col = "Lower.se.log2FC",
# Upper.se_col = "Upper.se.log2FC",
# letters_col = "sig",
# letters_d = 0.3,
# col_width = 0.7,
# dodge_width = 0.7,
# fill_colors = c("palegreen3", "skyblue"),
# color = "black",
# base_size = 14,
# alpha = 1,
# legend_position = c(0.1, 0.2))
## ----eval= F, fig.height = 7, fig.width = 12.5, fig.align = 'center', warning = F----
# data <- read.csv(system.file("extdata", "data_2factorBlock.csv", package = "rtpcr"))
# res <- ANOVA_DCt(data,
# numOfFactors = 2,
# block = "block",
# numberOfrefGenes = 1)
#
# df <- res$relativeExpression
#
# plotFactor(
# data = df,
# x_col = "factor2",
# y_col = "RE",
# group_col = "factor1",
# Lower.se_col = "Lower.se.RE",
# Upper.se_col = "Upper.se.RE",
# letters_col = "sig",
# letters_d = 0.2,
# fill_colors = c("aquamarine4", "gold2"),
# color = "black",
# alpha = 1,
# col_width = 0.7,
# dodge_width = 0.7,
# base_size = 16,
# legend_position = c(0.8, 0.8))
## ----eval= F, warning = F-----------------------------------------------------
# # Heffer et al., 2020, PlosOne
# library(dplyr)
# df <- read.csv(system.file("extdata", "data_Heffer2020PlosOne.csv", package = "rtpcr"))
#
# res <- ANOVA_DDCt(
# df,
# numOfFactors = 1,
# mainFactor.column = 1,
# numberOfrefGenes = 1,
# block = NULL)
#
# data <- res$relativeExpression
#
# # Selecting only the first words in 'contrast' column to be used as the x-axis labels.
# data$contrast <- sub(" .*", "", data$contrast)
#
# plotFactor(
# data = data,
# x_col = "contrast",
# y_col = "RE",
# group_col = "contrast",
# facet_col = "gene",
# Lower.se_col = "Lower.se.RE",
# Upper.se_col = "Upper.se.RE",
# letters_col = "sig",
# legend_position = "none") # more controlling arguments are available.
## ----eval= F------------------------------------------------------------------
# res <- ANOVA_DDCt(
# data_3factor,
# numOfFactors = 3,
# numberOfrefGenes = 1,
# mainFactor.column = 1,
# block = NULL)
#
# model <- res$perGene$E_PO$lm
# # Relative expression values for Concentration main effect
# Means_DDCt(model, specs = "Conc")
#
# contrast RE SE df LCL UCL p.value sig
# L vs H 0.1703610 0.2208988 24 0.1242014 0.2336757 <0.0001 ***
# M vs H 0.2227247 0.2208988 24 0.1623772 0.3055004 <0.0001 ***
# M vs L 1.3073692 0.2208988 24 0.9531359 1.7932535 0.0928 .
#
# Results are averaged over the levels of: Type, SA
# Confidence level used: 0.95
#
# # Relative expression values for Concentration sliced by Type
# Means_DDCt(model, specs = "Conc | Type")
#
# Type = R:
# contrast RE SE df LCL UCL p.value sig
# L vs H 0.103187 0.3123981 24 0.0659984 0.161331 <0.0001 ***
# M vs H 0.339151 0.3123981 24 0.2169210 0.530255 <0.0001 ***
# M vs L 3.286761 0.3123981 24 2.1022126 5.138776 <0.0001 ***
#
# Type = S:
# contrast RE SE df LCL UCL p.value sig
# L vs H 0.281265 0.3123981 24 0.1798969 0.439751 <0.0001 ***
# M vs H 0.146266 0.3123981 24 0.0935518 0.228684 <0.0001 ***
# M vs L 0.520030 0.3123981 24 0.3326112 0.813055 0.0059 **
#
# Results are averaged over the levels of: SA
# Confidence level used: 0.95
#
# # Relative expression values for Concentration sliced by Type and SA
# Means_DDCt(model, specs = "Conc | Type * SA")
## ----eval= F------------------------------------------------------------------
# data <- read.csv(system.file("extdata", "data_repeated_measure_1.csv", package = "rtpcr"))
# res3 <- REPEATED_DDCt(
# data,
# numOfFactors = 1,
# numberOfrefGenes = 1,
# mainFactor.column = 1,
# block = NULL
# )
# residuals <- resid(res3$perGene$Target$lm)
# shapiro.test(residuals)
# par(mfrow = c(1,2))
# plot(residuals)
# qqnorm(residuals)
# qqline(residuals, col = "red")
## ----eval= F------------------------------------------------------------------
# # Example input data frame with technical replicates
# data1 <- read.csv(system.file("extdata", "data_withTechRep.csv", package = "rtpcr"))
#
# # Calculate mean of technical replicates using first four columns as groups
# meanTech(data1,
# groups = 1:2,
# numOfFactors = 1,
# block = NULL)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.