plot.vinecop_dist | R Documentation |
vinecop_dist
and vinecop
objects.There are two plotting generics for vinecop_dist
objects.
plot.vinecop_dist
plots one or all trees of a given R-vine copula
model. Edges can be labeled with information about the corresponding
pair-copula. contour.vinecop_dist
produces a matrix of contour plots
(using plot.bicop
).
## S3 method for class 'vinecop_dist' plot(x, tree = 1, var_names = "ignore", edge_labels = NULL, ...) ## S3 method for class 'vinecop' plot(x, tree = 1, var_names = "ignore", edge_labels = NULL, ...) ## S3 method for class 'vinecop_dist' contour(x, tree = "ALL", cex.nums = 1, ...) ## S3 method for class 'vinecop' contour(x, tree = "ALL", cex.nums = 1, ...)
x |
|
tree |
|
var_names |
integer; specifies how to make use of variable names:
|
edge_labels |
character; options are:
|
... |
Unused for |
cex.nums |
numeric; expansion factor for font of the numbers. |
If you want the contour boxes to be perfect squares, the plot height should
be 1.25/length(tree)*(d - min(tree))
times the plot width.
The plot()
method returns an object that (among other things) contains the
igraph
representation of the graph; see Examples.
Thomas Nagler, Thibault Vatter
vinecop_dist
,
plot.bicop
# set up vine copula model u <- matrix(runif(20 * 10), 20, 10) vc <- vinecop(u, family = "indep") # plot plot(vc, tree = c(1, 2)) plot(vc, edge_labels = "pair") # extract igraph representation plt <- plot(vc, edge_labels = "family_tau") igr_obj <- get("g", plt$plot_env)[[1]] igr_obj # print object igraph::E(igr_obj)$name # extract edge labels # set up another vine copula model pcs <- lapply(1:3, function(j) # pair-copulas in tree j lapply(runif(4 - j), function(cor) bicop_dist("gaussian", 0, cor))) mat <- rvine_matrix_sim(4) vc <- vinecop_dist(pcs, mat) # contour plot contour(vc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.