rosenblatt | R Documentation |
The Rosenblatt transform takes data generated from a model and turns it into independent uniform variates, The inverse Rosenblatt transform computes conditional quantiles and can be used simulate from a stochastic model, see Details.
rosenblatt(x, model, cores = 1) inverse_rosenblatt(u, model, cores = 1)
x |
matrix of evaluation points; must be in (0, 1)^d for copula models. |
model |
a model object; classes currently supported are
|
cores |
if |
u |
matrix of evaluation points; must be in (0, 1)^d. |
The Rosenblatt transform (Rosenblatt, 1952) U = T(V) of a random vector V = (V_1,…,V_d) ~ F is defined as
U_1= F(V_1), U_{2} = F(V_{2}|V_1), …, U_d =F(V_d|V_1,…,V_{d-1}),
where F(v_k|v_1,…,v_{k-1}) is the conditional distribution of V_k given V_1 …, V_{k-1}, k = 2,…,d. The vector U = (U_1, …, U_d) then contains independent standard uniform variables. The inverse operation
V_1 = F^{-1}(U_1), V_{2} = F^{-1}(U_2|U_1), …, V_d =F^{-1}(U_d|U_1,…,U_{d-1}),
can be used to simulate from a distribution. For any copula F, if U is a vector of independent random variables, V = T^{-1}(U) has distribution F.
The formulas above assume a vine copula model with order d, …, 1.
More generally, rosenblatt()
returns the variables
U_{M[d + 1- j, j]}= F(V_{M[d + 1- j, j]} | V_{M[d - j, j - 1]}, …, V_{M[1, 1]}),
where M is the structure matrix. Similarly, inverse_rosenblatt()
returns
V_{M[d + 1- j, j]}= F^{-1}(U_{M[d + 1- j, j]} | U_{M[d - j, j - 1]}, …, U_{M[1, 1]}).
# simulate data with some dependence x <- replicate(3, rnorm(200)) x[, 2:3] <- x[, 2:3] + x[, 1] pairs(x) # estimate a vine distribution model fit <- vine(x, copula_controls = list(family_set = "par")) # transform into independent uniforms u <- rosenblatt(x, fit) pairs(u) # inversion pairs(inverse_rosenblatt(u, fit)) # works similarly for vinecop models vc <- fit$copula rosenblatt(pseudo_obs(x), vc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.