ACC | R Documentation |
Calculates the Anomaly Correlation Coefficient for the ensemble mean of
each model and the corresponding references for each startdate and each
leadtime.
The domain of interest can be specified by providing the list
of longitudes/latitudes (lon/lat) of the grid together with the corners
of the domain:
lonlatbox = c(lonmin, lonmax, latmin, latmax).
ACC( var_exp, var_obs, lon = NULL, lat = NULL, lonlatbox = NULL, conf = TRUE, conftype = "parametric", siglev = 0.95 )
var_exp |
Array of experimental anomalies with dimensions: c(nexp, nsdates, nltimes, nlat, nlon) or c(nexp, nsdates, nmembers, nltimes, nlat, nlon). |
var_obs |
Array of observational anomalies, same dimensions as var_exp except along the first dimension and the second if it corresponds to the member dimension. |
lon |
Array of longitudes of the var_exp/var_obs grids, optional. |
lat |
Array of latitudes of the var_exp/var_obs grids, optional. |
lonlatbox |
Domain to select: c(lonmin, lonmax, latmin, latmax), optional. |
conf |
TRUE/FALSE: confidence intervals and significance level provided or not. |
conftype |
"Parametric" provides a confidence interval for the ACC computed by a Fisher transformation and a significance level for the ACC from a one-sided student-T distribution. "Bootstrap" provides a confidence interval for the ACC and MACC computed from bootstrapping on the members with 100 drawings with replacement. To guarantee the statistical robustness of the result, make sure that your experiments/oservations/startdates/ leadtimes always have the same number of members. |
siglev |
The confidence level for the computed confidence intervals. |
ACC |
If |
MACC |
The array of the Mean Anomaly Correlation Coefficient with dimensions c(nexp, nobs, nleadtimes). |
History:
0.1 - 2013-08 (V. Guemas) - Original code
1.0 - 2013-09 (N. Manubens) - Formatting to CRAN
1.1 - 2013-09 (C. Prodhomme) - optimization
1.2 - 2014-08 (V. Guemas) - Bug-fixes: handling of NA & selection of domain + Simplification of code
1.3.0 - 2014-08 (V. Guemas) - Boostrapping over members
1.3.1 - 2014-09 (C. Prodhomme) - Add comments and minor style changes
1.3.2 - 2015-02 (N. Manubens) - Fixed ACC documentation and examples
Joliffe and Stephenson (2012). Forecast Verification: A Practitioner's Guide in Atmospheric Science. Wiley-Blackwell.
# See ?Load for explanations on the first part of this example. ## Not run: data_path <- system.file('sample_data', package = 's2dverification') expA <- list(name = 'experiment', path = file.path(data_path, 'model/$EXP_NAME$/$STORE_FREQ$_mean/$VAR_NAME$_3hourly', '$VAR_NAME$_$START_DATE$.nc')) obsX <- list(name = 'observation', path = file.path(data_path, '$OBS_NAME$/$STORE_FREQ$_mean/$VAR_NAME$', '$VAR_NAME$_$YEAR$$MONTH$.nc')) # Now we are ready to use Load(). startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101') sampleData <- Load('tos', list(expA), list(obsX), startDates, leadtimemin = 1, leadtimemax = 4, output = 'lonlat', latmin = 27, latmax = 48, lonmin = -12, lonmax = 40) ## End(Not run) sampleData$mod <- Season(sampleData$mod, 4, 11, 12, 2) sampleData$obs <- Season(sampleData$obs, 4, 11, 12, 2) clim <- Clim(sampleData$mod, sampleData$obs) ano_exp <- Ano(sampleData$mod, clim$clim_exp) ano_obs <- Ano(sampleData$obs, clim$clim_obs) acc <- ACC(Mean1Dim(ano_exp, 2), Mean1Dim(ano_obs, 2)) PlotACC(acc$ACC, startDates)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.