Description Usage Arguments Details Value Note Author(s) See Also Examples
Density, distribution function, quantile function and random generation for the distribution of the weighted sum of noncentral chisquares taken to powers.
1 2 3 4 5 6 7  dsumchisqpow(x, wts, df, ncp=0, pow=1, log = FALSE, order.max=6)
psumchisqpow(q, wts, df, ncp=0, pow=1, lower.tail = TRUE, log.p = FALSE, order.max=6)
qsumchisqpow(p, wts, df, ncp=0, pow=1, lower.tail = TRUE, log.p = FALSE, order.max=6)
rsumchisqpow(n, wts, df, ncp=0, pow=1)

x, q 
vector of quantiles. 
wts 
the vector of weights.
This is recycled against the 
df 
the vector of degrees of freedom.
This is recycled against the 
ncp 
the vector of noncentrality parameters.
This is recycled against the 
pow 
the vector of the power parameters.
This is recycled against the 
log 
logical; if TRUE, densities f are given as log(f). 
order.max 
the order to use in the approximate density, distribution, and quantile computations, via the GramCharlier, Edeworth, or CornishFisher expansion. 
p 
vector of probabilities. 
n 
number of observations. 
log.p 
logical; if TRUE, probabilities p are given as log(p). 
lower.tail 
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. 
Let X_i ~ chi^2(delta_i, v_i) be independently distributed noncentral chisquares, where v_i are the degrees of freedom, and delta_i are the noncentrality parameters. Let w_i and p_i be given constants. Suppose
Y = sum w_i (X_i)^(p_i).
Then Y follows a weighted sum of chisquares to power distribution.
dsumchisqpow
gives the density, psumchisqpow
gives the
distribution function, qsumchisqpow
gives the quantile function,
and rsumchisqpow
generates random deviates.
Invalid arguments will result in return value NaN
with a warning.
The PDF, CDF, and quantile function are approximated, via the Edgeworth or Cornish Fisher approximations, which may not be terribly accurate in the tails of the distribution. You are warned.
The distribution parameters are not recycled
with respect to the x, p, q
or n
parameters,
for, respectively, the density, distribution, quantile
and generation functions. This is for simplicity of
implementation and performance. It is, however, in contrast
to the usual R idiom for dpqr functions.
The 'sum of chisquare power' distribution does not generalize the 'chibarsquare' distribution, whose density is the sum of chisquare densities.
Steven E. Pav shabbychef@gmail.com
The upsilon distribution,
dupsilon,pupsilon,qupsilon,rupsilon
.
1 2 3 4 5 6 7 8  wts < c(1,3,4)
df < c(100,20,10)
ncp < c(5,3,1)
pow < c(1,0.5,1)
rvs < rsumchisqpow(128, wts, df, ncp, pow)
dvs < dsumchisqpow(rvs, wts, df, ncp, pow)
qvs < psumchisqpow(rvs, wts, df, ncp, pow)
pvs < qsumchisqpow(ppoints(length(rvs)), wts, df, ncp, pow)

Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.