Nothing
#' saeHB.spatial : Small Area Estimation under Spatial SAR Model using Hierarchical Bayesian Method
#'
#' Provides several functions and datasets for area level of Small Area Estimation under Spatial SAR Model using Hierarchical Bayesian (HB) Method. Model-based estimators include the HB estimators based on a Spatial Fay-Herriot model with univariate normal distribution for variable of interest.The 'rjags' package is employed to obtain parameter estimates. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>.
#'
#' @section Author(s):
#' Arina Mana Sikana, Azka Ubaidillah
#'
#' \strong{Maintaner}: Arina Mana Sikana \email{221810195@@stis.ac.id}
#'
#' @section Functions:
#' \describe{
#' \item{\code{\link{spatial.normal}}}{This function gives small area estimator under Spatial SAR Model and is implemented to variable of interest (y) that assumed to be a Normal Distribution. The range of data is \eqn{(-\infty < y < \infty)}}.
#' }
#'
#' @section Reference:
#' \itemize{
#' \item{Rao, J.N.K & Molina. (2015). Small Area Estimation 2nd Edition. New Jersey: John Wiley and Sons, Inc. <doi:10.1002/9781118735855>.}
#' \item{J. Kubacki and A. Jedrzejczak. (2016). Small Area Estimation of Income Under Spatial SAR Model. Statistics in Transition New Series, Vol. 17, No. 3, pp. 365–390. <doi: 10.21307/stattrans-2016-028>.}
#' \item{H. C. Chung and G. S. Datta. (2020). Bayesian Hierarchical Spatial Models for Small Area Estimation. Research Report Series. Washington, D.C.: U.S. Census Bureau.}
#' }
#'
#' @docType package
#' @name saeHB.spatial
#'
#' @import stringr
#' @import coda
#' @import rjags
#' @import stats
#' @import grDevices
#' @import graphics
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.