mspeFHsumca | R Documentation |
This function returns MSPE estimator with the combination of linearization and resampling appoximation method called "Sumca", for Fay Herriot model.
mspeFHsumca(formula, data, D, K = 50, method = 1, na_rm, na_omit)
formula |
(formula). Stands for the model formula that specifies the auxiliary variables to be used in the regression model. This should follow the R model formula syntax. |
data |
(data frame). It represents the data containing the response values and auxiliary variables for the Nested Error Regression Model. |
D |
(vector). It represents the knowing sampling variance for Fay Herriot model. |
K |
(integer). It represents the Monte-Carlo sample size for "Sumca". Default value is 50. |
method |
It represents the variance component estimation method. See "Details". |
na_rm |
A logical value indicating whether to remove missing values (NaN) from the input matrices and vectors.
If |
na_omit |
A logical value indicating whether to stop the execution if missing values (NaN) are present in the input data.
If |
This method was proposed by J. Jiang, P. Lahiri, and T. Nguyen, sumca method combines the advantages of linearization and resampling methods and obtains unified, positive, low-computation burden and second-order unbiased MSPE estimators.
Default value for method
is 1, method = 1
represents the MOM method, method = 2
and method = 3
represents ML and REML method, respectively.
This function returns a list with components:
MSPE |
(vector) MSPE estimates for Fay Herriot model. |
bhat |
(vector) Estimates of the unknown regression coefficients. |
Ahat |
(numeric) Estimates of the variance component. |
Peiwen Xiao, Xiaohui Liu, Yu Zhang, Yuzi Liu, Jiming Jiang
J. Jiang and M. Torabi. Sumca: simple; unified; monte carlo assisted approach to second order unbiased mean squared prediction error estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(2):467-485, 2020.
X <- matrix(runif(10 * 3), 10, 3)
X[,1] <- rep(1, 10)
D <- (1:10) / 10 + 0.5
Y <- X %*% c(0.5, 1, 1.5) + rnorm(10, 0, sqrt(2)) + rnorm(10, 0, sqrt(D))
data <- data.frame(Y = Y, X1 = X[,2], X2 = X[,3])
formula <- Y ~ X1 + X2
result <- mspeFHsumca(formula, data, D, K = 50, method = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.