mspeNERsumca: Compute MSPE through Sumca method for Nested error regression...

View source: R/RcppExports.R

mspeNERsumcaR Documentation

Compute MSPE through Sumca method for Nested error regression model

Description

This function returns MSPE estimator with the combination of linearization and resampling appoximation method for Nested error regression model.

Usage

mspeNERsumca(ni, formula, data, Xmean, K = 50, method = 1, na_rm, na_omit)

Arguments

ni

(vector). It represents the sample number for every small area.

formula

(formula). Stands for the model formula that specifies the auxiliary variables to be used in the regression model. This should follow the R model formula syntax.

data

(data frame). It represents the data containing the response values and auxiliary variables for the Nested Error Regression Model.

Xmean

(matrix). Stands for the population mean of auxiliary values.

K

(integer). It represents the Monte-Carlo sample size for "Sumca". Default value is 50.

method

The MSPE estimation method to be used. See "Details".

na_rm

A logical value indicating whether to remove missing values (NaN) from the input matrices and vectors. If TRUE, missing values in the input data (X, Y, ni, and Xmean) are automatically cleaned using internal functions. If FALSE, missing values are not removed. Defaults to FALSE.

na_omit

A logical value indicating whether to stop the execution if missing values (NaN) are present in the input data. If TRUE, the function will check for missing values in X, Y, ni, and Xmean. If any missing values are found, an error message will be raised, prompting the user to handle the missing data before proceeding. Defaults to FALSE.

Details

This method was proposed by J. Jiang, P. Lahiri, and T. Nguyen, sumca method combines the advantages of linearization and resampling methods and obtains unified, positive, low-computation burden and second-order unbiased MSPE estimators.

Default value for method is 1, method = 1 represents the MOM method, method = 2 and method = 3 represents ML and REML method, respectively.

Value

This function returns a list with components:

MSPE

(vector) MSPE estimates for NER model.

bhat

(vector) Estimates of the unknown regression coefficients.

sigvhat2

(numeric) Estimates of the area-specific variance component.

sigehat2

(numeric) Estimates of the random error variance component.

Author(s)

Peiwen Xiao, Xiaohui Liu, Yu Zhang, Yuzi Liu, Jiming Jiang

References

J. Jiang and M. Torabi. Sumca: simple; unified; monte carlo assisted approach to second order unbiased mean squared prediction error estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(2):467-485, 2020.

Examples

Ni <- 1000
sigmaX <- 1.5
m <- 10
beta <- c(0.5, 1)
sigma_v2 <- 0.8
sigma_e2 <- 1
ni <- sample(seq(1, 10), m, replace = TRUE)
n <- sum(ni)
p <- length(beta)

pop.model <- function(Ni, sigmaX, beta, sigma_v2, sigma_e2, m) {
  x <- rnorm(m * Ni, 1, sqrt(sigmaX))
  v <- rnorm(m, 0, sqrt(sigma_v2))
  y <- numeric(m * Ni)
  theta <- numeric(m)
  kk <- 1
  for (i in 1:m) {
    sumx <- 0
    for (j in 1:Ni) {
      sumx <- sumx + x[kk]
      y[kk] <- beta[1] + beta[2] * x[kk] + v[i] + rnorm(1, 0, sqrt(sigma_e2))
      kk <- kk + 1
    }
    meanx <- sumx / Ni
    theta[i] <- beta[1] + beta[2] * meanx + v[i]
  }
  group <- rep(seq(m), each = Ni)
  data <- data.frame(y = y, group = group, x1 = x)
  return(list(data = data, theta = theta))
} 

sampleXY <- function(Ni, ni, m, Population) {
  Indx <- c()
  for (i in 1:m) {
    Indx <- c(Indx, sample(c(((i - 1) * Ni + 1):(i * Ni)), ni[i]))
  }
  Sample <- Population[Indx, ]
  return(Sample)
} 

Population <- pop.model(Ni, sigmaX, beta, sigma_v2, sigma_e2, m)$data
XY <- sampleXY(Ni, ni, m, Population)

formula <- y ~ x1
data <- XY

Xmean <- matrix(NA, m, p)
for (tt in 1:m) {
  Xmean[tt, ] <- colMeans(Population[which(Population$group == tt), "x1", drop = FALSE])
}

result <- mspeNERsumca(ni, formula, data, Xmean, K = 50, method = 1)

saeMSPE documentation built on April 4, 2025, 5:18 a.m.