Nothing
#' OASIS Brain Data
#'
#' A dataset containing a small subset of the OASIS Brain Data project. Noise
#' variables have been added to increase the number of predictors and show the
#' utility of the sail package.
#'
#' @format A list with 3 elements: \describe{ \item{x}{a matrix of dimension
#' \code{136 x 30} with the following colums:\describe{\item{Age}{Patient's
#' age} \item{EDUC}{Education} \item{MMSE}{Mini-Mental State Exam}
#' \item{eTIV}{Estimated Total Intracranial Volume} \item{nWBV}{Normalized
#' Whole Brain Volume} \item{ASF}{Atlas scaling factor}
#' \item{noise[1-24]}{24 independent standard normal noise variables}}}\item{y}{a
#' numeric vector of length 136 representing the right Hippocampal volume for
#' each patient}\item{e}{a binary 0/1 vector of length 136, representing
#' Dementia status. 0: Non-demented, 1: Demented} }
#' @source \url{https://github.com/stnava/RMI/tree/master/tomfletcher}
#' @source \url{http://www.oasis-brains.org/}
#' @examples
#' oasis
"oasis"
#' Simulated Data Used in Bhatnagar et al. (2018+) Paper
#'
#' A dataset containing simulated data used in the accompanying paper to this
#' package
#'
#' @details The code used to simulate the data is available at
#' \url{https://github.com/sahirbhatnagar/sail/blob/master/data-raw/SIMULATED_data.R}.
#' See \code{\link{gendata}} for more details. The true model is given by
#' \deqn{Y = f1(X1) + f2(X2) + f3(X3) + f4(X4) + E * (2 + f3(X3) +
#' f4(X4))} where \describe{\item{}{f1(t)=5t}\item{}{f2(t)=3(2t -
#' 1)^2}\item{}{f3(t)= 4sin(2pi*t) /
#' (2-sin(2pi*t)}\item{}{f4(t)=6(0.1sin(2pi*t) + 0.2cos(2pi*t) +
#' 0.3sin(2pi*t)^2 + 0.4cos(2pi*t)^3 + 0.5sin(2pi*t)^3)}}
#' @format A list with 7 elements: \describe{ \item{x}{a matrix of dimension
#' \code{100 x 20} where rows are observations and columns are
#' predictors}\item{y}{a numeric response vector of length 100 }\item{e}{a
#' numeric exposure vector of length 100}\item{f1,f2,f3,f4}{the true
#' functions} }
#' @references Lin, Y., & Zhang, H. H. (2006). Component selection and smoothing
#' in multivariate nonparametric regression. The Annals of Statistics, 34(5),
#' 2272-2297.
#' @references Huang J, Horowitz JL, Wei F. Variable selection in nonparametric
#' additive models (2010). Annals of statistics. Aug 1;38(4):2282.
#' @references Bhatnagar SR, Yang Y, Greenwood CMT. Sparse additive interaction
#' models with the strong heredity property (2018+). Preprint.
#' @examples
#' sailsim
"sailsim"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.