Description Usage Arguments Details Value Author(s) See Also Examples
View source: R/summary.selection.R
Print or return a summary of a selection estimation.
1 2 3 4 5 6 |
object |
an object of class ' |
x |
an object of class ' |
part |
character string: which parts of the summary to print: "full" for all the estimated parameters (probit selection, outcome estimates, correlation and residual variance), or "outcome" for the outcome results only. |
digits |
numeric, (suggested) number of significant digits. |
... |
currently not used. |
The variance-covariance matrix of the two-step estimator is currently implemented only for tobit-2 (sample selection) models, but not for the tobit-5 (switching regression) model.
Summary methods return an object of class summary.selection
.
Print methods return the argument invisibly.
Arne Henningsen, Ott Toomet otoomet@ut.ee
summary
, selection
,
and selection-methods
.
1 2 3 4 5 6 7 8 9 10 11 12 | ## Wooldridge( 2003 ): example 17.5, page 590
data( Mroz87 )
wooldridge <- selection( lfp ~ nwifeinc + educ + exper + I( exper^2 ) +
age + kids5 + kids618, log( wage ) ~ educ + exper + I( exper^2 ),
data = Mroz87, method = "2step" )
# summary of the 1st step probit estimation (Example 17.1, p. 562f)
# and the 2nd step OLS regression (example 17.5, page 590)
summary( wooldridge )
# summary of the outcome equation only
print(summary(wooldridge), part="outcome")
|
Loading required package: maxLik
Loading required package: miscTools
Please cite the 'maxLik' package as:
Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1.
If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site:
https://r-forge.r-project.org/projects/maxlik/
--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
753 observations (325 censored and 428 observed)
15 free parameters (df = 739)
Probit selection equation:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.270077 0.508593 0.531 0.59556
nwifeinc -0.012024 0.004840 -2.484 0.01320 *
educ 0.130905 0.025254 5.183 2.81e-07 ***
exper 0.123348 0.018716 6.590 8.34e-11 ***
I(exper^2) -0.001887 0.000600 -3.145 0.00173 **
age -0.052853 0.008477 -6.235 7.61e-10 ***
kids5 -0.868328 0.118522 -7.326 6.21e-13 ***
kids618 0.036005 0.043477 0.828 0.40786
Outcome equation:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5781032 0.3050062 -1.895 0.05843 .
educ 0.1090655 0.0155230 7.026 4.83e-12 ***
exper 0.0438873 0.0162611 2.699 0.00712 **
I(exper^2) -0.0008591 0.0004389 -1.957 0.05068 .
Multiple R-Squared:0.1569, Adjusted R-Squared:0.149
Error terms:
Estimate Std. Error t value Pr(>|t|)
invMillsRatio 0.03226 0.13362 0.241 0.809
sigma 0.66363 NA NA NA
rho 0.04861 NA NA NA
--------------------------------------------
--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
753 observations (325 censored and 428 observed)
15 free parameters (df = 739)
Outcome equation:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5781032 0.3050062 -1.895 0.05843 .
educ 0.1090655 0.0155230 7.026 4.83e-12 ***
exper 0.0438873 0.0162611 2.699 0.00712 **
I(exper^2) -0.0008591 0.0004389 -1.957 0.05068 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Multiple R-Squared:0.1569, Adjusted R-Squared:0.149
--------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.