summary.selection: Summarizing Selection Estimations

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/summary.selection.R

Description

Print or return a summary of a selection estimation.

Usage

1
2
3
4
5
6
   ## S3 method for class 'selection'
summary(object, ...)
   ## S3 method for class 'summary.selection'
print(x,
      digits = max(3, getOption("digits") - 3),
      part = "full", ...)

Arguments

object

an object of class 'selection'.

x

an object of class 'summary.selection'.

part

character string: which parts of the summary to print: "full" for all the estimated parameters (probit selection, outcome estimates, correlation and residual variance), or "outcome" for the outcome results only.

digits

numeric, (suggested) number of significant digits.

...

currently not used.

Details

The variance-covariance matrix of the two-step estimator is currently implemented only for tobit-2 (sample selection) models, but not for the tobit-5 (switching regression) model.

Value

Summary methods return an object of class summary.selection. Print methods return the argument invisibly.

Author(s)

Arne Henningsen, Ott Toomet otoomet@ut.ee

See Also

summary, selection, and selection-methods.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
## Wooldridge( 2003 ): example 17.5, page 590
data( Mroz87 )
wooldridge <- selection( lfp ~ nwifeinc + educ + exper + I( exper^2 ) +
   age + kids5 + kids618, log( wage ) ~ educ + exper + I( exper^2 ),
   data = Mroz87, method = "2step" )

# summary of the 1st step probit estimation (Example 17.1, p. 562f)
# and the 2nd step OLS regression (example 17.5, page 590)
summary( wooldridge )

# summary of the outcome equation only
print(summary(wooldridge), part="outcome")

Example output

Loading required package: maxLik
Loading required package: miscTools

Please cite the 'maxLik' package as:
Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1.

If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site:
https://r-forge.r-project.org/projects/maxlik/
--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
753 observations (325 censored and 428 observed)
15 free parameters (df = 739)
Probit selection equation:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.270077   0.508593   0.531  0.59556    
nwifeinc    -0.012024   0.004840  -2.484  0.01320 *  
educ         0.130905   0.025254   5.183 2.81e-07 ***
exper        0.123348   0.018716   6.590 8.34e-11 ***
I(exper^2)  -0.001887   0.000600  -3.145  0.00173 ** 
age         -0.052853   0.008477  -6.235 7.61e-10 ***
kids5       -0.868328   0.118522  -7.326 6.21e-13 ***
kids618      0.036005   0.043477   0.828  0.40786    
Outcome equation:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.5781032  0.3050062  -1.895  0.05843 .  
educ         0.1090655  0.0155230   7.026 4.83e-12 ***
exper        0.0438873  0.0162611   2.699  0.00712 ** 
I(exper^2)  -0.0008591  0.0004389  -1.957  0.05068 .  
Multiple R-Squared:0.1569,	Adjusted R-Squared:0.149
   Error terms:
              Estimate Std. Error t value Pr(>|t|)
invMillsRatio  0.03226    0.13362   0.241    0.809
sigma          0.66363         NA      NA       NA
rho            0.04861         NA      NA       NA
--------------------------------------------
--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
753 observations (325 censored and 428 observed)
15 free parameters (df = 739)
Outcome equation:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.5781032  0.3050062  -1.895  0.05843 .  
educ         0.1090655  0.0155230   7.026 4.83e-12 ***
exper        0.0438873  0.0162611   2.699  0.00712 ** 
I(exper^2)  -0.0008591  0.0004389  -1.957  0.05068 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Multiple R-Squared:0.1569,	Adjusted R-Squared:0.149
--------------------------------------------

sampleSelection documentation built on Jan. 13, 2021, 7:49 p.m.