VE_Lin_SYG_Ratio: The unequal probability linearisation variance estimator for...

VE.Lin.SYG.RatioR Documentation

The unequal probability linearisation variance estimator for the estimator of a ratio (Sen-Yates-Grundy form)

Description

Computes the unequal probability Taylor linearisation variance estimator for the estimator of a ratio of two totals/means. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Lin.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s

vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s

vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values. All values of VecX.s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.

VecPk.s

vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s

matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x:

R = \frac{∑_{k\in U} y_k/N}{∑_{k\in U} x_k/N} = \frac{∑_{k\in U} y_k}{∑_{k\in U} x_k}

the ratio estimator of R is given by:

\hat{R} = \frac{∑_{k\in s} w_k y_k}{∑_{k\in s} w_k x_k}

where w_k=1/π_k and π_k denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{R} can be estimated by the unequal probability linearisation variance estimator (implemented by the current function). For details see Woodruff (1971); Deville (1999); Demnati-Rao (2004); Sarndal et al., (1992, Secs. 5.5 and 5.6):

\hat{V}(\hat{R}) = \frac{-1}{2}∑_{k\in s}∑_{l\in s} \frac{π_{kl}-π_kπ_l}{π_{kl}} (w_k u_k - w_l u_l)^{2}

where

u_k = \frac{y_k - \hat{R} x_k}{\hat{t}_{x,NHT}}

with

\hat{t}_{x,NHT} = ∑_{k\in s} w_k x_k

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of the population total for the (denominator) variable VecX.s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17–26.

Deville, J.-C. (1999) Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology, 25, 193–203.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169–175.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-Verlag, Inc.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119–127.

Woodruff, R. S. (1971) A Simple Method for Approximating the Variance of a Complicated Estimate. Journal of the American Statistical Association, 66, 334, 411–414.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.Lin.HT.RatioVE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio

Examples

data(oaxaca)                                 #Loads the Oaxaca municipalities dataset
pik.U  <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s      <- oaxaca$sHOMES00                    #Defines the sample to be used for
y1     <- oaxaca$POP10                       #Defines the numerator variable y1
y2     <- oaxaca$POPMAL10                    #Defines the numerator variable y2
x      <- oaxaca$HOMES10                     #Defines the denominator variable x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1])           #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Lin.SYG.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Lin.SYG.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

samplingVarEst documentation built on Jan. 14, 2023, 5:08 p.m.