| santaR_fit | R Documentation | 
Generate a SANTAObj containing all the splines model for individual and group time evolutions. Once all the splines representing individual and group evolutions are fitted, all time-points are back-projected (projected) and employed in subsequent analysis in place of the input measurements (functional approach). A grouping can be provided to separate individuals and compare trajectories: any number of groups can be provided, but comparision of group trajectories can only be executed between 2 groups.
 Individual trajectories with less than 4 time-points are rejected due to constraints on smooth.spline fitting (number of time-points < 4).
 Individual trajectories with less time-points than df are rejected due to constraints on smooth.spline fitting (number of time-points < df).
Rejected individual trajectories are not taken into account for mean curves calculations.
santaR_fit(inputMatrix, df, grouping = NA, verbose = TRUE)
| inputMatrix | 
 | 
| df | (float) Degree of freedom to employ for fitting the  | 
| grouping | NA or a  | 
| verbose | (bool) If TRUE output the progress of fitting. Default is TRUE. | 
A SANTAObj containing all the spline models with individual and group time evolutions, for further analysis.
The returned SANTAObj is structured as follow:
| SANTAObj | santaR object for futher analysis | 
| SANTAObj$properties$df | input degree of freedom | 
| SANTAObj$properties$CBand$status | Confidence Bands for group mean curve calculated (TRUE or FALSE) | 
| SANTAObj$properties$CBand$nBoot | parameter, number or bootstrap rounds for calculation of the group mean curve confidence bands | 
| SANTAObj$properties$CBand$alpha | parameter, confidence of the group mean curve band | 
| SANTAObj$properties$pval.dist$status | p-value distance calculated (TRUE or FALSE) | 
| SANTAObj$properties$pval.dist$nPerm | parameter, number of permutations for calculation of distance p-value | 
| SANTAObj$properties$pval.dist$alpha | parameter, confidence on the bootstrapped p-value | 
| SANTAObj$properties$pval.fit$status | p-value fitting calculated (TRUE or FALSE) | 
| SANTAObj$properties$pval.fit$nPerm | parameter, number of permutations for calculation of fitting p-value | 
| SANTAObj$properties$pval.fit$alpha | parameter, confidence on the bootstrapped p-value | 
| SANTAObj$general$inputData | inputMatrix | 
| SANTAObj$general$cleanData.in | only kept individuals INPUT values (equivalent to inputMatrix - rejected) | 
| SANTAObj$general$cleanData.pred | only kept individuals PREDICTED values on Ind splines | 
| SANTAObj$general$grouping | grouping vector given as input | 
| SANTAObj$general$meanCurve | spline fit over all kept datapoint (cleanData.pred) | smooth.splineobject | 
| SANTAObj$general$pval.curveCorr | Pearson correlation coefficient between the two group curves, to detect highly correlated group shapes if required. | 
| SANTAObj$general$pval.dist | p-value between groups based on distance between groupMeanCurves | 
| SANTAObj$general$pval.dist.l | lower bound confidence interval on p-value | 
| SANTAObj$general$pval.dist.u | upper bound confidence interval on p-value | 
| SANTAObj$general$pval.fit | p-value between groups based on groupMeanCurves fitting | 
| SANTAObj$general$pval.fit.l | lower bound confidence interval on p-value | 
| SANTAObj$general$pval.fit.u | upper bound confidence interval on p-value | 
| SANTAObj$groups | list of group information | 
| SANTAObj$groups$rejectedInd | list of rejected individual (#tp < 4 or df) | data | 
| SANTAObj$groups$curveInd | list of spline fit | smooth.splineobject | 
| SANTAObj$groups$groupMeanCurve | spline fit over groupData.pred | smooth.splineobject | 
| SANTAObj$groups$point.in | all group points INPUT values (x,y) [kept individuals] | 
| SANTAObj$groups$point.pred | all group points PREDICTED values on Ind splines (x,y) | 
| SANTAObj$groups$groupData.in | only individuals from this group INPUT value (IND x TIME) | 
| SANTAObj$groups$groupData.pred | only individuals from this group PREDICTED values on Ind splines (x,y) | 
Other Analysis: 
get_grouping(),
get_ind_time_matrix(),
santaR_CBand(),
santaR_auto_fit(),
santaR_auto_summary(),
santaR_plot(),
santaR_pvalue_dist(),
santaR_pvalue_fit(),
santaR_start_GUI()
## 56 measurements, 8 subjects, 7 unique time-points Yi <- acuteInflammation$data$var_1 ind <- acuteInflammation$meta$ind time <- acuteInflammation$meta$time group <- acuteInflammation$meta$group grouping <- get_grouping(ind, group) inputMatrix <- get_ind_time_matrix(Yi, ind, time) resultSANTAObj <- santaR_fit(inputMatrix, df=5, grouping=grouping, verbose=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.