scdeco.cop | R Documentation |
Copula dynamic correlation fitting function
scdeco.cop(
y,
x,
marginals,
w = NULL,
n.mcmc = 10000,
burn = 1000,
thin = 1,
offset1 = NULL,
offset2 = NULL
)
y |
2-column matrix of observations |
x |
covariates |
marginals |
length-2 vector with strings of the two marginals |
w |
(optional) |
n.mcmc |
number of mcmc iterations to run |
burn |
how many of the mcmc iterations to burn |
thin |
how much to thin the mcmc iterations |
offset1 |
(optional) offset for link(mu1) |
offset2 |
(optional) offset for link(mu2) |
matrix with mcmc samples as rows and columns corresponding to the different parameters
n <- 1000
x.use = rnorm(n)
w.use = runif(n,-1,1)
eta1.use = c(-2.2, 0.7)
eta2.use = c(-2, 0.8)
beta1.use = c(1,0.5)
beta2.use = c(1,1)
alpha1.use = 7
alpha2.use = 3
tau.use = c(-0.2, .3)
marginals.use <- c("ZINB", "ZIGA")
y.use <- scdeco.sim.cop(marginals=marginals.use, x=x.use,
eta1.true=eta1.use, eta2.true=eta2.use,
beta1.true=beta1.use, beta2.true=beta2.use,
alpha1.true=alpha1.use, alpha2.true=alpha2.use,
tau.true=tau.use, w=w.use)
mcmc.out <- scdeco.cop(y=y.use, x=x.use, marginals=marginals.use, w=w.use,
n.mcmc=10, burn=0, thin=1) # n.mcmc=1000, burn=100, thin=5)
lowerupper <- t(apply(mcmc.out, 2, quantile, c(0.025, 0.5, 0.975)))
estmat <- cbind(lowerupper[,1],
c(eta1.use, eta2.use, beta1.use, beta2.use, alpha1.use, alpha2.use, tau.use),
lowerupper[,c(2,3)])
colnames(estmat) <- c("lower", "trueval", "estval", "upper")
estmat
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.